玻璃纤维管钢筋混凝土空心柱的轴压徐变性能
CSTR:
作者:
中图分类号:

TU378.3

基金项目:

辽宁省自然科学基金(201705403030);辽宁省教育厅基础项目(LJ2019JL018)


Creep behavior of glass fiber reinforced polymer tube filled with reinforced hollow concrete columns on axial compression
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究玻璃纤维管钢筋混凝土空心柱轴压下的徐变性能,对空心柱轴压下的受力特性进行分析,建立了适用于玻璃纤维管钢筋混凝土空心柱轴压徐变公式。编制轴心受压荷载作用下徐变分析程序计算徐变应变与时间关系曲线,并通过已有试验对该程序的正确性进行验证。在程序正确性的基础上,计算空心率、混凝土强度、作用荷载及玻璃纤维管壁厚等主要参数对其轴压徐变性能的影响。结果表明:空心柱的徐变应变在28 d以内(作用初期)增长较快,28 d以后增长速度变得缓慢,大约6个月以后徐变应变趋于稳定。空心率和混凝土强度对玻璃纤维管钢筋混凝土空心柱轴压徐变影响较小,其次是玻璃纤维管壁厚,作用荷载对徐变影响较大。

    Abstract:

    In order to study the characteristics of creep performance of glass fiber reinforced concrete hollow columns under axial compression, the mechanical properties were analyzed according to the mechanical characteristics of the hollow column under axial compression in this paper.The creep formula of the GFRP tube reinforced concrete hollow column was established under axial compression.A creep analysis program under the axial compression load was developed to calculate the creep strain-time relationship curve. And the correctness of creep program was verified by existing tests. On this basis, the influence of the main design parameters, such as applied load, thickness of GFRP tube wall, strength grade of concrete and hollow ratio on axial compression creep performance was calculated and analyzed.The results show that the creep of hollow columns increases rapidly in 28 days (the early stage of load action), and the growth rate becomes slower after 28 days.The creep tends to be stable after about 6 months. The hollow ratio and concrete strength have little effect on the axial compressive creep of GFRP concrete hollow columns,followed by the thickness of GFRP tube wall. The applied load has a greater effect on the creep.

    参考文献
    [1] YANG D Y, FRANGOPOL D M, TENG J G. Probabilistic life-cycle optimization of durability-enhancing maintenance actions: Application to FRP strengthening planning [J]. Engineering Structures, 2019, 188: 340-349.
    [2] AUMAN H, STRATFORD C, PALERMO A. An overview of research and applications of FRP in New Zealand reinforced concrete structures [J]. Structural Engineering International, 2020, 30(2): 201-208.
    [3] 吴智深, 刘加平, 邹德辉, 等. 海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究[J]. 中国工程科学, 2019, 21(3): 31-40. WU Z S, LIU J P, ZOU D H, et al. Status quo and development trend of light-weight, high-strength, and durable structural materials applied in marine bridge engineering [J].Strategic Study of CAE, 2019, 21(3): 31-40.(in Chinese)
    [4] LIM J C, OZBAKKALOGLU T. Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete [J]. Journal of Composites for Construction, 2015, 19(4): 04014072.
    [5] HAIN A, ZAGHI A E, SAIIDI M S. Flexural behavior of hybrid concrete-filled fiber reinforced polymer tube columns [J]. Composite Structures, 2019, 230: 111540.
    [6] 张霓, 郑晨阳, 羡丽娜, 等. 玻璃纤维管增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能[J]. 复合材料学报,2020,37(12):3052-3063. ZHANG N, ZHENG C Y, XIAN L N, et al. Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members [J]. Acta Materiae Compositae Sinica,2020,37(12):3052-3063.(in Chinese)
    [7] 周浪. 间隔包裹FRP约束长龄期混凝土圆柱的徐变变形分析[J]. 建筑科学, 2011, 27(Sup1): 1-3. ZHOU L. Creep analysis of fiber straps-wrapped long-term concrete columns [J]. Building Science, 2011, 27(Sup1): 1-3.(in Chinese)
    [8] YAN L B, CHOUW N. Natural FRP tube confined fibre reinforced concrete under pure axial compression: a comparison with glass/carbon FRP [J]. Thin-Walled Structures, 2014, 82: 159-169.
    [9] 潘毅, 吴晓飞, 曹双寅, 等. 长期轴压下有初应力的CFRP约束混凝土柱应力-应变关系分析[J]. 土木工程学报, 2016, 49(9): 9-19. PAN Y, WU X F, CAO S Y, et al. Analysis on the stress-strain relationship of CFRP confined concrete with initial stress under long-term sustained load [J]. China Civil Engineering Journal, 2016, 49(9): 9-19.(in Chinese)
    [10] BAZLI M, ZHAO X L, BAI Y, et al. Durability of pultruded GFRP tubes subjected to seawater sea sand concrete and seawater environments [J]. Construction and Building Materials, 2020, 245: 118399.
    [11] 张霓. GFRP管空心钢筋混凝土构件试验研究与理论分析[D]. 沈阳: 东北大学, 2016. ZHANG Ni. Experimental research and theoretical analysis on GFRP tube filled with reinforced hollow concrete members [D]. Shenyang: Northeastern University, 2016. (in Chinese).
    [12] 徐芝纶. 弹性力学简明教程[M]. 北京: 高等教育出版社, 1984. XU Z L.Concise course in elasticity [M]. Beijing: Higher Education Press, 1984. (in Chinese)
    [13] 王元丰. 钢管混凝土徐变[M]. 北京: 科学出版社, 2006. WANG Y F.Creep of concrete filled steel tube [M]. Beijing: Science Press, 2006. (in Chinese)
    [14] NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete [M]. London and New York: Construction Press, 1983.
    [15] 张电杰. 考虑徐变效应的FRP约束混凝土塑性模型研究[D]. 北京: 北京交通大学, 2013. ZHANG D J.A plasticity model for confined concrete including creep effects [D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese)
    [16] 于清, 韩林海, 张铮. 长期荷载作用对FRP约束混凝土轴心受压构件力学性能的影响[J]. 中国公路学报, 2003, 16(3): 58-63. YU Q, HAN L H, ZHANG Z. Long-term effect in FRP-confined concrete stub columns under sustained loading [J]. China Journal of Highway and Transport, 2003, 16(3): 58-63.(in Chinese)
    相似文献
    引证文献
引用本文

张霓,郑晨阳,羡丽娜,王连广.玻璃纤维管钢筋混凝土空心柱的轴压徐变性能[J].土木与环境工程学报(中英文),2021,43(6):88-94. ZHANG Ni, ZHENG Chenyang, XIAN Lina, WANG Lianguang. Creep behavior of glass fiber reinforced polymer tube filled with reinforced hollow concrete columns on axial compression[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(6):88-94.10.11835/j. issn.2096-6717.2020.126

复制
相关视频

分享
文章指标
  • 点击次数:398
  • 下载次数: 865
  • HTML阅读次数: 553
  • 引用次数: 0
历史
  • 收稿日期:2020-05-26
  • 在线发布日期: 2021-08-19
文章二维码