形状记忆合金丝加固古塔墙体抗震性能试验研究
CSTR:
作者:
中图分类号:

TU362

基金项目:

国家自然科学基金(51878550);陕西省杰出青年科学基金(2021JC-44)


Experimental studies on seismic performance of ancient pagoda wall strengthened with shape memory alloy wire
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对砖石古塔墙体抗震性能差的问题,提出采用形状记忆合金丝(SMA丝)对古塔墙体进行抗震加固的新技术。为研究其加固效果,对SMA丝进行了力学性能测试,分析应变幅值对其耗能的影响,并通过SMA丝加卸载训练使其保持稳定的完全超弹性状态;通过2片SMA丝加固古塔墙体模型(1片完好墙体和1片损伤墙体)和1片未加固古塔墙体模型的拟静力试验,研究SMA丝加固对古塔墙体破坏形态、滞回性能、承载力、变形能力、刚度退化规律、延性及耗能能力等抗震性能的影响。试验结果表明:采用SMA丝加固古塔墙体虽未改变墙体的破坏模式,但在一定程度上可改善其脆性破坏,显著提高墙体的承载力和耗能能力,有效限制墙体的剪切变形,延缓墙体的开裂和刚度退化;与未加固墙体相比,SMA丝加固墙体的承载力和极限位移分别提高了16.91%和22.65%,SMA丝加固损伤墙体的承载力和变形能力甚至超过了完好墙体,但其弹性段和开裂段刚度和承载力明显低于完好墙体。

    Abstract:

    In view of the poor seismic performance of the ancient pagoda wall, a new seismic strengthening technology, strengthening the ancient pagoda wall with shape memory alloy wire (SMA wire), was proposed. In order to study the reinforcement effect, the mechanical properties of SMA wire were tested, and the influence of strain amplitude on its energy consumption was analyzed. The SMA wires were trained by loading and unloading to maintain a stable fully superelastic state. Then, the pseudo-static tests of two ancient pagoda wall models (one intact wall and one damaged wall) strengthened with SMA wire and one unreinforced model were carried out. The effects of SMA wire reinforcement on the seismic performance such as failure mode, hysteretic performance, bearing capacity, deformability, stiffness degradation law, ductility and energy dissipation capacity of historical masonry tower wall were studied. Test results show that SMA wire reinforcement does not change the failure mode of the wall, but can improve the brittle failure to a certain extent, can significantly improve the bearing capacity and energy consumption capacity of the wall, effectively limit the shear deformation of the wall and delay the wall cracking and stiffness degradation. Compared with the unreinforced wall, the bearing capacity and ultimate displacement of the wall strengthened with SMA wire increase by 16.91% and 22.65%, respectively. The bearing capacity and deformation capacity of the damaged wall strengthened with SMA wire are even greater than that of the intact wall. However, the stiffness and bearing capacity of elastic section and cracked section are obviously lower than that of intact wall.

    参考文献
    [1] 俞茂宏. 古建筑结构研究的历史性、艺术性和科学性[J]. 工程力学, 2004, 21(Sup1):190-213.YU M H. Studies on the historical, art and scientific characteristic of ancient structures[J]. Engineering Mechanics, 2004, 21(Sup1):190-213. (in Chinese)
    [2] 卢俊龙, 李晓蕾. 内填黏土实心结构砖塔振动台试验研究[J]. 建筑结构学报, 2017, 38(12):154-162.LU J L, LI X L. Shaking table test on brick masonry pagoda with solid structure in-filled by clay[J]. Journal of Building Structures, 2017, 38(12):154-162. (in Chinese)
    [3] 卢俊龙,李传立,韩鑫,等.竖向荷载下砖石古塔的损伤性能[J]. 土木与环境工程学报(中英文), 2021, 43(1):164-175. LU J L, LI C L, HAN X, et al. Damage performance of ancient masonry pagodas under the vertical load[J]. Journal of Civil and Environmental Engineering, 2021, 43(1):164-175. (in Chinese)
    [4] 卢俊龙, 李凯, 李嘉怿. 某宋代砖塔结构整体损伤识别分析[J]. 防灾减灾工程学报, 2019, 39(1):61-66.LU J L, LI K, LI J Y. Analysis of integrated damage for a masonry pagoda built in song dynasty[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1):61-66. (in Chinese)
    [5] SOTI R, ABDULRAHMAN L, BARBOSA A R, et al. Case study:Post-earthquake model updating of a heritage pagoda masonry temple using AEM and FEM[J]. Engineering Structures, 2020, 206:109950.
    [6] 王善伟, 王社良, 杨涛, 等. 古砖墙注浆加固性能试验及滞回模型研究[J]. 哈尔滨工程大学学报, 2020, 41(9):1295-1302.WANG S W, WANG S L, YANG T, et al. Performance tests and hysteretic model research on ancient brick walls reinforced by grouting[J]. Journal of Harbin Engineering University, 2020, 41(9):1295-1302. (in Chinese)
    [7] 魏智辉, 潘毅, 邱洪兴, 等. 勾缝加固砖砌体墙的抗压性能试验[J]. 哈尔滨工业大学学报, 2017, 49(12):184-188.WEI Z H, PAN Y, QIU H X, et al. Experimental study on compressive behavior of masonry walls strengthened with pointing mortar[J]. Journal of Harbin Institute of Technology, 2017, 49(12):184-188. (in Chinese)
    [8] 呼梦洁, 张苏俊, 李胜才, 等. 砖石古塔灌浆与围箍加固的抗震性能研究[J]. 建筑技术, 2017, 48(11):1196-1199.HU M J, ZHANG S J, LI S C, et al. Research on seismic behavior of masonry pagoda strengthened by grouting and surrounding-hoop[J]. Architecture Technology, 2017, 48(11):1196-1199. (in Chinese)
    [9] XIE Q F, ZHANG L P, ZHOU W J, et al. Cyclical behavior of timber mortise-tenon joints strengthened with shape memory alloy:Experiments and moment-rotation model[J]. International Journal of Architectural Heritage, 2019, 13(8):1209-1222.
    [10] 董金芝, 李向民, 张富文, 等. 基于SMA装置的框架-受控摇摆墙结构抗震性能试验研究[J]. 土木工程学报, 2019, 52(4):41-51.DONG J Z, LI X M, ZHANG F W, et al. Experimental study on seismic performance of frame-controlled rocking wall structures using SMA devices[J]. China Civil Engineering Journal, 2019, 52(4):41-51. (in Chinese)
    [11] 王凤华, 周福霖, 黄襄云, 等. 新型形状记忆合金阻尼器在古塔抗震加固中的应用与优化分析[J]. 工程抗震与加固改造, 2011, 33(2):43-49.WANG F H, ZHOU F L, HUANG X Y, et al. Application and optimization analysis of new type shape memory alloy damper in seismic strengthening of ancient tower[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(2):43-49. (in Chinese)
    [12] 赵祥, 王社良, 周福霖, 等. 基于SMA阻尼器的古塔模型结构振动台试验研究[J]. 振动与冲击, 2011, 30(11):219-223.ZHAO X, WANG S L, ZHOU F L, et al. Shaking table tests for ancient pagoda model structure based on shape memory alloy actuating devices[J]. Journal of Vibration and Shock, 2011, 30(11):219-223. (in Chinese)
    [13] 王社良, 刘伟, 杨涛. 西安小雁塔结构振动控制试验研究[J]. 振动与冲击, 2017, 36(16):113-121.WANG S L, LIU W, YANG T. Experimental study on vibration control of Xiaoyan pagoda in Xi'an[J]. Journal of Vibration and Shock, 2017, 36(16):113-121. (in Chinese)
    [14] XIE Q F, XU D F, WANG Y Z, et al. Seismic behavior of brick masonry walls representative of ancient Chinese pagoda walls subjected to in-plane cyclic loading[J]. International Journal of Architectural Heritage, 2019, 180:1-13.
    [15] 砌墙砖试验方法:GB/T 2542-2012[S]. 北京:中国标准出版社, 2012. Test methods for wall bricks:GB/T 2542-2012[S]. Beijing:Standards Press of China, 2012. (in Chinese)
    [16] 建筑砂浆基本性能试验方法标准:JGJ/T 70-2009[S]. 北京:中国建筑工业出版社, 2009. Standard for test method of basic properties of construction mortar:JGJ/T 70-2009[S]. Beijing:China Architecture & Building Press, 2009. (in Chinese)
    [17] 刘博, 王社良, 李彬彬, 等. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14):14161-14167.LIU B, WANG S L, LI B B, et al. A superelastic SMA macroscopic phenomenological model considering the influence of strain amplitude and strain rate[J]. Materials Reports, 2020, 34(14):14161-14167. (in Chinese)
    [18] 建筑抗震试验规程:JGJ/T 101-2015[S]. 北京:中国建筑工业出版社, 2015.Specification for seismic test of building:JGJ/T 101-2015[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
    [19] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京:东南大学出版社, 1989.TANG J R.Seismic resistance of reinforced concrete frame joints[M]. Nanjing:Southeast University Press, 1989. (in Chinese)
    [20] 冯榆晟, 伍云天, 胡逸轩, 等. 钢板混凝土联肢剪力墙子结构抗震性能试验研究[J]. 建筑结构学报, 2019, 40(Sup1):18-30.FENG Y S, WU Y T, HU Y X, et al. Experimental study on seismic performance of coupled steel plate and concrete composite walls[J]. Journal of Building Structures, 2019, 40(Sup1):18-30. (in Chinese)
    [21] XUE J Y, WU C W, ZHANG X C, et al. Effect of pre-tension in superelastic shape memory alloy on cyclic behavior of reinforced mortise-tenon joints[J]. Construction and Building Materials, 2020, 241:118136.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢启芳,浩文明,徐敦峰,王越众.形状记忆合金丝加固古塔墙体抗震性能试验研究[J].土木与环境工程学报(中英文),2022,44(2):38-47. XIE Qifang, HAO Wenming, XU Dunfeng, WANG Yuezhong. Experimental studies on seismic performance of ancient pagoda wall strengthened with shape memory alloy wire[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(2):38-47.10.11835/j. issn.2096-6717.2021.085

复制
分享
文章指标
  • 点击次数:375
  • 下载次数: 707
  • HTML阅读次数: 355
  • 引用次数: 0
历史
  • 收稿日期:2021-01-05
  • 在线发布日期: 2022-02-14
文章二维码