联合鲸鱼算法和遗传算法优化GRNN预测斜拉索覆冰厚度
CSTR:
作者:
中图分类号:

U448.27

基金项目:

国家自然科学基金(51778343)


Hybrid whale optimization algorithm and genetic algorithm for optimization of GRNN for predicting stayed cable icing thickness
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了预测冬季易结冰区斜拉索覆冰的增长,运用灰色关联分析方法分析斜拉索倾角、温度、湿度、风速、降雨量及气压对斜拉索覆冰厚度的关联影响,明确各影响因素的相关性大小,剔除弱相关性因素;联合遗传算法(GA)和鲸鱼算法(WOA)选择最优光滑因子,提出一种WOA-GA算法优化广义回归神经网络(GRNN)的斜拉索覆冰厚度预测方法。其特点是:以输出值与实际值均方差作为适应度函数,计算每个粒子的适应度值;将GA算法的交叉和变异算子引入WOA算法,同时借助权重更新策略,提升全局寻优的能力,避免WOA算法陷入局部最优解;最后,经过迭代寻优,输出最小适应度值对应的光滑因子,构建GRNN预测模型。结果表明:环境温度相关性最高,其次是倾角、降水量、风速、相对湿度,气压关联度最小,呈弱相关性;相比于传统的GRNN、WOA-GRNN、PSO-GA-GRNN模型,联合鲸鱼算法和遗传算法优化的GRNN覆冰预测模型精度较高,其平均绝对误差百分比仅为3.58%,均方根误差为0.58 mm;采用敏感性分析法评价影响因素对模型精度的影响,发现温度对模型影响程度最大,其次是拉索倾角。

    Abstract:

    In order to estimate the icing growth characteristics of stay cables in the ice prone area in winter, the grey correlation analysis method is used to analyze the correlation effects of inclination angle, temperature, humidity, wind speed, rainfall and air pressure on the icing thickness of stay cables, and the correlation of each influential factor is determined. Then, the genetic algorithm (GA) and the whale algorithm (WOA) are combined to select the optimal smoothing factor, and a WOA-GA Optimized Generalized Regression Neural Network (GRNN) method is proposed to predict the icing thickness of stay cables. Its characteristic is to take the mean square deviation of output value and actual value as fitness function, and to calculate the fitness value of each particle; introducing the crossover and mutation operator of GA algorithm into WOA algorithm; meanwhile, via weight update strategy, the capacity of global optimization is improved, to prevent the WOA algorithm falling into local optimal; finally, through iterative optimization, the smooth factor corresponding to the minimum fitness value was output, and the GRNN pre optimization model was built. The results show that the correlation of ambient temperature is the highest, followed by dip angle, precipitation, wind speed and relative humidity, and the correlation of atmospheric pressure is the lowest; compared with the traditional GRNN, WOA-GRNN and PSO-GA-GRNN models, the proposed GRNN model has high accuracy, with the average mean absolute percentage error of 3.58% and root mean square error of 0.58 mm; The sensitivity analysis method is used to evaluate the impact of the influential factors on the accuracy of the model. It is found that the temperature has the greatest influence on the model, followed by the cable inclination.

    参考文献
    [1] 王凯丽, 谭冬梅, 瞿伟廉, 等. 两种典型覆冰斜拉索气动特性及驰振分析[J]. 噪声与振动控制, 2017, 37(4):126-131, 149. WANG K L, TAN D M, QU W L, et al. Analysis of aerodynamic characteristics and galloping performance for two typical iced stay cables[J]. Noise and Vibration Control, 2017, 37(4):126-131, 149. (in Chinese)
    [2] 李寿英, 黄韬, 叶继红. 覆冰斜拉索驰振稳定性的理论研究[J]. 振动与冲击, 2013, 32(1):122-127. LI S Y, HUANG T, YE J H. Theoretical analysis of galloping stability for stay cables with iced accretions[J]. Journal of Vibration and Shock, 2013, 32(1):122-127. (in Chinese)
    [3] MATEJICKA L, GEORGAKIS C T, SCHWARZ A, et al. Cable surface for the reduction of risk associated with bridge cable ice accretions[J]. Structural Engineering International, 2019, 29(3):425-432.
    [4] ZARNANI A, MUSILEK P, SHI X Y, et al. Learning to predict ice accretion on electric power lines[J]. Engineering Applications of Artificial Intelligence, 2012, 25(3):609-617.
    [5] HOMOLA M C, VIRK M S, WALLENIUS T, et al. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):724-729.
    [6] 黄新波, 李佳杰, 欧阳丽莎, 等. 采用模糊逻辑理论的覆冰厚度预测模型[J]. 高电压技术, 2011, 37(5):1245-1252. HUANG X B, LI J J, OUYANG L S, et al. Icing thickness prediction model using fuzzy logic theory[J]. High Voltage Engineering, 2011, 37(5):1245-1252. (in Chinese)
    [7] 黄宵宁, 许家浩, 杨成顺, 等. 基于数据驱动算法和LS-SVM的输电线路覆冰预测[J]. 电力系统自动化, 2014, 38(15):81-86. HUANG X N, XU J H, YANG C S, et al. Transmission line icing prediction based on data driven algorithm and LS-SVM[J]. Automation of Electric Power Systems, 2014, 38(15):81-86. (in Chinese)
    [8] 刘宏伟, 陆佳政, 赖旬阳, 等. 输电线路覆冰厚度短期多变量灰色预测模型研究[J]. 高电压技术, 2015, 41(10):3372-3377. LIU H W, LU J Z, LAI X Y, et al. Short-term multi-variable grey model in predicting icing thickness on transmission lines[J]. High Voltage Engineering, 2015, 41(10):3372-3377. (in Chinese)
    [9] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2000, 358(1776):2913-2939.
    [10] 孙才新, 蒋兴良, 熊启新, 等. 导线覆冰及其干湿增长临界条件分析[J]. 中国电机工程学报, 2003, 23(3):141-145. SUN C X, JIANG X L, XIONG Q X, et al. Analysis of critical icing conditions of conductor and wet-dry growth[J]. Proceedings of the CSEE, 2003, 23(3):141-145. (in Chinese)
    [11] 蒋兴良, 申强. 环境参数对导线覆冰厚度影响的试验分析[J]. 高电压技术, 2010, 36(5):1096-1100. JIANG X L, SHEN Q. Experimental research on influence of environmental parameters on the conductor icing thickness[J]. High Voltage Engineering, 2010, 36(5):1096-1100. (in Chinese)
    [12] 江志红, 刘冬, 刘渝,等. 导线覆冰极值的概率分布模拟及其应用试验[J]. 大气科学学报, 2010, 33(4):385-394. JIANG Z H, LIU D, LIU Y, et al. Study on the probability distribution simulation of conductor icing and its application test[J]. Transactions of Atmospheric Sciences, 2010, 33(4):385-394. (in Chinese)
    [13] 邹明华, 邓洪洲. 输电线路设计覆冰厚度统计模型取用[J]. 电网与清洁能源, 2010, 26(1):40-44. ZOU M H, DENG H Z. Study on probability distribution model of designed ice load for transmission lines[J]. Power System and Clean Energy, 2010, 26(1):40-44. (in Chinese)
    [14] 赵建坤. 架空输电线路覆冰厚度预测模型研究[D]. 北京:华北电力大学, 2016. ZHAO J K. Research on icing thickness prediction model of overhead transmission lines[D]. Beijing:North China Electric Power University, 2016. (in Chinese)
    [15] 杨静, 李英娜, 赵振刚, 等. 基于相空间重构小波神经网络的短期覆冰预测[J]. 传感器与微系统, 2019, 38(9):108-111. YANG J, LI Y N, ZHAO Z G, et al. Short-term icing forecasting based on phase space reconstruction wavelet neural network[J]. Transducer and Microsystem Technologies, 2019, 38(9):108-111. (in Chinese)
    [16] 王锦文. 基于改进粒子算法优化NRBF神经网络的覆冰厚度预测模型[J]. 电力科学与技术学报, 2012, 27(4):76-80. WANG J W. Ice thickness prediction model of transmission line based on improved particle swarm algorithm to optimize NRBF neural network[J]. Journal of Electric Power Science and Technology, 2012, 27(4):76-80. (in Chinese)
    [17] XIONG W, YUAN H J, YOU L. Prediction method of icing thickness of transmission line based on MEAO[J]. Cluster Computing, 2018, 21(1):845-853.
    [18] SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6):568-576.
    [19] 贾义鹏, 吕庆, 尚岳全. 基于粒子群算法和广义回归神经网络的岩爆预测[J]. 岩石力学与工程学报, 2013, 32(2):343-348. JIA Y P, LV Q, SHANG Y Q. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2):343-348. (in Chinese)
    [20] 王文辉, 骆正山, 张新生. 基于PSO-GRNN模型的埋地管道腐蚀剩余寿命预测[J]. 表面技术, 2019, 48(10):267-275, 284. WANG W H, LUO Z S, ZHANG X S. Prediction on remaining service life of buried pipeline after corrosion based on PSO-GRNN model[J]. Surface Technology, 2019, 48(10):267-275, 284. (in Chinese)
    [21] 李西兴, 杨道明, 李鑫, 等. 基于混合遗传鲸鱼优化算法的柔性作业车间自动导引车融合调度方法[J]. 中国机械工程, 2021, 32(8):938-950, 986. LI X X, YANG D M, LI X, et al. Flexible job shop AGV fusion scheduling method based on HGWOA[J]. China Mechanical Engineering, 2021, 32(8):938-950, 986. (in Chinese)
    [22] 丁杨, 周双喜, 董晶亮, 等. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(Sup1):274-277. DING Y, ZHOU S X, DONG J L, et al. Application comparison of artificial intelligence method in civil engineering monitoring[J]. Materials Reports, 2019, 33(Sup1):274-277. (in Chinese)
    [23] 王雨, 刘国彬, 屠传豹. 基于遗传-GRNN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34(Sup1):167-171. WANG Y, LIU G B, TU C B. Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Sup1):167-171. (in Chinese)
    [24] ROBINSON J, SINTON S, RAHMAT-SAMII Y. Particle swarm, genetic algorithm, and their hybrids:Optimization of a profiled corrugated horn antenna[C]//IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313). June 16-21, 2002, San Antonio, TX, USA. IEEE, 2002:314-317.
    [25] 张公凯, 陈才学, 郑拓. 改进鲸鱼算法在电动汽车有序充电中的应用[J]. 计算机工程与应用, 2021, 57(4):272-278. ZHANG G K, CHEN C X, ZHENG T. Application of improved whale optimization algorithm in ordered charging of electric vehicle[J]. Computer Engineering and Applications, 2021, 57(4):272-278. (in Chinese)
    [26] 冯一凡, 毛毳. 斜拉索覆冰形态试验研究[J]. 天津城建大学学报, 2019, 25(1):20-25. FENG Y F, MAO C. Research on the model of ice accretion on inclined cable[J]. Journal of Tianjin Chengjian University, 2019, 25(1):20-25. (in Chinese)
    [27] 朱永灿. 架空输电线路覆冰生长模型及其关键参数研究[D]. 西安:西安电子科技大学, 2017. ZHU Y C. Research on the icing growth model and key parameters on overhead transmission lines[D]. Xi'an:Xidian University, 2017. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪峰,毛锦伟,刘章军.联合鲸鱼算法和遗传算法优化GRNN预测斜拉索覆冰厚度[J].土木与环境工程学报(中英文),2022,44(3):10-19. WANG Feng, MAO Jinwei, LIU Zhangjun. Hybrid whale optimization algorithm and genetic algorithm for optimization of GRNN for predicting stayed cable icing thickness[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(3):10-19.10.11835/j. issn.2096-6717.2021.144

复制
分享
相关视频

文章指标
  • 点击次数:699
  • 下载次数: 1357
  • HTML阅读次数: 1411
  • 引用次数: 0
历史
  • 收稿日期:2021-03-16
  • 在线发布日期: 2022-02-16
文章二维码