基于EEMD-FastICA的位移摄像测量误差源探究
CSTR:
作者:
基金项目:

浙江省基础公益研究计划(LGF21E080010);国家自然科学基金(51578424)


Exploration of error sources of vision displacement monitoring technique by EEMD-FastICA algorithms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着摄像测量技术在土木工程结构健康监测领域的应用逐渐增多,摄像测量技术的长期全天候工作性能受到越来越多的关注。为探究摄像测量技术的主要误差源,提出一种基于盲源分离(Blind Source Separation,BSS)的误差源分析新方法:为了构建多通道信号作为盲源分离模型的输入信号,采用集合经验模态分解法(Ensemble Empirical Mode Decomposition,EEMD)拓展观测信号通道;采用快速独立分量分析算法(Fast Independent Component Analysis,FastICA)对输入信号进行盲分离,得到FastICA分量;分析各分量与温度、光照等环境因素的相关性,探究主分量对应的误差源;利用分离算法所得的混合矩阵逆变换,计算各误差源分量的占比,确定摄像测量的主误差源。进行长期摄像测量误差源探究试验,通过盲源分离算法分析长期摄像测量误差数据,结果表明,该算法具有良好的分离效果,可有效分离提取各误差源所致位移误差分量,在长期摄像测量中,温度为主要误差源。

    Abstract:

    With the increasing application of the vision measurement technique in the civil engineering structure health monitoring,more attention has been paid to the long-term all-weather performance of vision measurement.To explore the main error source of vision measurement technique,a new error source analysis method based on Blind Source Separation (BSS) is proposed:First, in order to construct the multi-channel signals as the input signals of the blind source separation model, Ensemble Empirical Mode Decomposition (EEMD) was used to expand the observation signal channels; then, Fast Independent Component Analysis (FastICA) algorithm was used to separate the input signals, to obtain the FastICA components; next,the correlation between each component and environmental factors such as temperature, light irradiation, etc., was analyzed to explore the error source corresponding to the principal component; finally,by using the inverse transformation of the mixed matrix obtained by the separation algorithm, the proportion of the specified error source components was calculated and the main error source of the camera measurement was determined. The error data of long-term vision measurement were analyzed by blind source separation algorithm. The results show that this algorithm has good separation effect and can effectively separate and extract the displacement error components caused by each error source. In long-term vision measurement, temperature is the primary error source.

    参考文献
    [1] 于起峰, 尚洋. 摄像测量学简介与展望[J]. 科技导报, 2008, 26(24):84-88. YU Q F, SHANG Y. Introduction and prospect of videometrics[J]. Science & Technology Review, 2008, 26(24):84-88. (in Chinese)
    [2] XU Y, BROWNJOHN J M W. Review of machine-vision based methodologies for displacement measurement in civil structures[J]. Journal of Civil Structural Health Monitoring, 2018, 8(1):91-110.
    [3] 尚洋, 于起峰, 关棒磊, 等. 大型结构变形监测摄像测量研究进展[J]. 实验力学, 2017, 32(5):593-600. SHANG Y, YU Q F, GUAN B L, et al. Recent advances of videometrics for large-scale structure deformation monitoring[J]. Journal of Experimental Mechanics, 2017, 32(5):593-600. (in Chinese)
    [4] FENG D M, FENG M Q. Computer vision for SHM of civil infrastructure:From dynamic response measurement to damage detection-A review[J]. Engineering Structures, 2018, 156:105-117.
    [5] 杜文嫚, 闫佳麟, 张朋波, 等. 高速摄像测量系统误差分析与研究[J]. 中国仪器仪表, 2016(1):43-46. DU W M, YAN J L, ZHANG P B, et al. Error analysis and research of high speed camera measurement system[J]. China Instrumentation, 2016(1):43-46. (in Chinese)
    [6] 秦良忠, 周华飞, 卢成原, 等. 高层建筑动态位移摄像测量环境影响及自适应滤波降噪研究[J]. 振动与冲击, 2016, 35(9):190-196, 218. QIN L Z, ZHOU H F, LU C Y, et al. Environmental effects on videogrammetry for dynamic displacement monitoring of high-rise buildings and adaptive filtering for de-noising of displacement measurement data[J]. Journal of Vibration and Shock, 2016, 35(9):190-196, 218. (in Chinese)
    [7] ZHOU H F, LU L J, LI Z Y, et al. Exploration of temperature effect on videogrammetric technique for displacement monitoring[J]. Smart Structures and Systems, 2020, 25(2):135-153.
    [8] BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second-order statistics[J]. IEEE Transactions on Signal Processing, 1997, 45(2):434-444.
    [9] HYVÄRINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7):1483-1492.
    [10] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
    [11] 黎恒. 经验模态分解中的优化理论与方法研究[D]. 西安:西安电子科技大学, 2017. LI H. Research on the theory and approach of key issues for empirical mode decomposition[D]. Xi'an:Xidian University, 2017. (in Chinese)
    [12] LI F, XIONG J J, LAN X H, et al. NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 103-117.
    [13] 鲁超, 吴贤振, 刘建伟, 等. 基于小波与EMD的井下深孔爆破振动信号对比分析[J]. 中国矿业, 2021, 30(2):84-90. LU C, WU X Z, LIU J W, et al. Comparative analysis of the underground mine's deep-hole blasting vibration signals based on wavelet and EMD[J]. China Mining Magazine, 2021, 30(2):84-90. (in Chinese)
    [14] WU Z H, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
    [15] THIRUMALAISAMY M R, ANSELL P J. Fast and adaptive empirical mode decomposition for multidimensional, multivariate signals[J]. IEEE Signal Processing Letters, 2018, 25(10):1550-1554.
    [16] 张贤达. 基于EEMD的发动机失火故障诊断[D]. 长春:吉林大学, 2017. ZHANG X D. Misfire fault diagnosis of engine based on EEMD[D]. Changchun:Jilin University, 2017. (in Chinese)
    [17] 孟繁平. 基于改进的FastICA盲源分离算法的多人语音评测系统实现[J]. 电子技术与软件工程, 2020(20):124-125. MENG F P. Implementation of multi-person speech evaluation system based on improved FastICA blind source separation[J]. Electronic Technology & Software Engineering, 2020(20):124-125. (in Chinese)
    [18] ALDHAHAB A, MIKHAEL W B. Face recognition employing DMWT followed by FastICA[J]. Circuits, Systems, and Signal Processing, 2018, 37(5):2045-2073.
    [19] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634.
    [20] 陈秀敏, 李珊君, 董兴建. Fast-ICA算法非线性函数性能的仿真分析[J]. 计算机应用与软件, 2020, 37(6):277-282, 333. CHEN X M, LI S J, DONG X J. Simulation analysis of nonlinear function performance of Fast-ICA algorithm[J]. Computer Applications and Software, 2020, 37(6):277-282, 333. (in Chinese)
    [21] ADAMCZYK M, LIBERADZKI P, SITNIK R. Temperature compensation method for digital cameras in 2D and 3D measurement applications[J]. Sensors (Basel, Switzerland), 2018, 18(11):3685.
    [22] DAAKIR M, ZHOU Y, PIERROT DESEILLIGNY M, et al. Improvement of photogrammetric accuracy by modeling and correcting the thermal effect on camera calibration [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 142-155.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周华飞,蒋贤辉,余忆彬,王哲.基于EEMD-FastICA的位移摄像测量误差源探究[J].土木与环境工程学报(中英文),2022,44(3):20-28. ZHOU Huafei, JIANG Xianhui, YU Yibin, WANG Zhe. Exploration of error sources of vision displacement monitoring technique by EEMD-FastICA algorithms[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(3):20-28.10.11835/j. issn.2096-6717.2021.150

复制
分享
文章指标
  • 点击次数:407
  • 下载次数: 994
  • HTML阅读次数: 812
  • 引用次数: 0
历史
  • 收稿日期:2021-05-31
  • 在线发布日期: 2022-02-16
文章二维码