膜法污水处理技术研究应用动态与未来可持续发展思考
CSTR:
作者:
中图分类号:

TU703.1

基金项目:

国家重点研发计划(2019YFC0408200);国家自然科学基金(51838009)


Recent advances and overview on sustainable development of membrane-based wastewater treatment technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [140]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在环境功能质量提升和碳达峰、碳中和背景下,膜法污水处理发展面临高标准和绿色低耗处理的双重挑战。如何突破现有膜技术水通量与污染物去除效率瓶颈,降低膜技术/工艺能耗与碳排放,支撑膜法污水处理技术未来可持续发展,是亟需关注和思考的问题。近年来,膜法污水处理在膜分离过程原理、抗污染膜材料制备、膜工艺创新及工程应用等方面取得了长足进步,并逐步向材料设计精准化、膜界面功能化、工艺绿色化的方向发展。围绕高性能膜材料制备、膜技术/工艺的功能拓展、膜的可持续利用以及膜工艺绿色低耗发展等4个方面综述了相关研究进展,并对膜法污水处理技术可持续发展进行了总结和展望。在未来多目标需求背景下,膜法污水处理技术应向多功能拓展、选择性分离、定制化分离与绿色化发展等方向迈进,以实现膜法污水处理技术的可持续发展。

    Abstract:

    The development of membrane-based wastewater treatment technology faces two challenges, i.e.:(i) improvement in the environment quality requires high-standard treatment, and (ii) carbon emission peak and carbon neutrality calls for green and sustainable techniques. Under such circumstances, methods to break the bottleneck of water permeability and pollutant removal efficiency trade-off, to reduce the energy consumption and carbon emission of membrane technology, and to stimulate the sustainable development of membrane-based wastewater treatment are of great significance.Recently, remarkable progress in membrane-based wastewater treatment has been achieved in terms of membrane separation fundamentals, antifouling membrane preparation, membrane process innovations, and engineering applications. Current efforts have been dedicated to precise design of membrane materials, functionalization of membrane interface, and process greening transformation. In this work, recent research progress has been reviewed in terms of functional extension of membrane technology/process, design of high-performance membrane materials, sustainable utilization of membranes, and green development of membrane processes. Further analysis and discussion on future development are also presented.In the context of future multi-target needs, multi-functionalization, selective and customized separation, and green development are worthy of in-depth research for promoting the sustainable evolution of membrane-based wastewater treatment technology.

    参考文献
    [1] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452:301-310.
    [2] ELIMELECH M, PHILLIP W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333:712-717.
    [3] ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8):634-641.
    [4] ALTURKI A A, TADKAEW N, MCDONALD J A, et al.Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications[J]. Journal of Membrane Science, 2010, 365(1/2):206-215.
    [5] WANG Z X, DESHMUKH A, DU Y H, et al. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes[J]. Water Research, 2020, 170:115317.
    [6] LI M, WANG X, PORTER C J, et al. Concentration and recovery of dyes from textile wastewater using a self-standing, support-free forward osmosis membrane[J]. Environmental Science & Technology, 2019, 53(6):3078-3086.
    [7] LAN Y D, GROENEN-SERRANO K, COETSIER C, et al. Nanofiltration performances after membrane bioreactor for hospital wastewater treatment:Fouling mechanisms and the quantitative link between stable fluxes and the water matrix[J]. Water Research, 2018, 146:77-87.
    [8] ZHANG X R, GUO Y, WANG T L, et al. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment:Role of silver@silica nanopollens[J]. Water Research, 2020, 176:115749.
    [9] XIAO K, LIANG S, WANG X M, et al. Current state and challenges of full-scale membrane bioreactor applications:A critical review[J]. Bioresource Technology, 2019, 271:473-481.
    [10] ZHAO Y, WU M Y, SHEN P X, et al. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium[J]. Journal of Membrane Science, 2021, 618:118668.
    [11] LI Y J, SHI S Y, CAO H B, et al. Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine[J]. Journal of Membrane Science, 2021, 625:119111.
    [12] ROMAN M, GUTIERREZ L, VAN DIJK L H, et al. Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination[J]. Separation and Purification Technology, 2020, 252:117487.
    [13] MA L S, GUTIERREZ L, VAN VOOREN T, et al. Fate of organic micropollutants in reverse electrodialysis:Influence of membrane fouling and channel clogging[J]. Desalination, 2021, 512:115114.
    [14] BAZINET L, MOALIC M. Coupling of porous filtrationand ion-exchange membranes in an electrodialysis stack and impact on cation selectivity:A novel approach for sea water demineralization and the production of physiological water[J]. Desalination, 2011, 277(1/2/3):356-363.
    [15] ZHANG R N, LIU Y N, HE M R, et al. Antifouling membranes for sustainable water purification:Strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21):5888-5924.
    [16] ZHAO X T, ZHANG R N, LIU Y N, et al. Antifouling membrane surface construction:Chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551:145-171.
    [17] TANG C Y, YANG Z, GUO H, et al. Potable water reuse through advanced membrane technology[J]. Environmental Science & Technology, 2018, 52(18):10215-10223.
    [18] HAASE M F, JEON H, HOUGH N, et al. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation[J]. Nature Communications, 2017, 8:1234.
    [19] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.
    [20] WANG J T, YUAN Z J, WU X L, et al. Beetle-inspired assembly of heterostructured lamellar membranes with polymer cluster-patterned surface for enhanced molecular permeation[J]. Advanced Functional Materials, 2019, 29(23):1900819.
    [21] JIANG X, SHAO Y, LI J, et al. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation[J]. ACS Nano, 2020:14(12):17376-17386.
    [22] LI Q L, ELIMELECH M. Organic fouling and chemical cleaning of nanofiltration membranes:Measurements and mechanisms[J]. Environmental Science & Technology, 2004, 38(17):4683-4693.
    [23] HAO X J, GAO S S, TIAN J Y, et al. Calcium-carboxyl intrabridging during interfacial polymerization:A novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8):4371-4379.
    [24] ZHANG J, WANG Q Y, WANG Z W, et al. Modification of poly(vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability[J]. Journal of Membrane Science, 2014, 466:293-301.
    [25] ZHANG J Q, PAN X L, XUE Q Z, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion[J]. Journal of Membrane Science, 2017, 532:38-46.
    [26] GAO S J, ZHU Y Z, WANG J L, et al. Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation[J]. Advanced Functional Materials, 2018, 28(49):1801944.
    [27] THAMARAISELVAN C, CARMIEL Y, ELIAD G, et al. Modification of a polypropylene feed spacer with metal oxide-thin film by chemical bath deposition for biofouling control in membrane filtration[J]. Journal of Membrane Science, 2019, 573:511-519.
    [28] ZHOU H J, YANG G W, ZHANG Y Y, et al. Bioinspired block copolymer for mineralized nanoporous membrane[J]. ACS Nano, 2018, 12(11):11471-11480.
    [29] JIANG J H, ZHU L P, ZHU L J, et al. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone)[J]. ACS Applied Materials & Interfaces, 2013, 5(24):12895-12904.
    [30] OH H S, YEON K M, YANG C S, et al. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane[J]. Environmental Science & Technology, 2012, 46(9):4877-4884.
    [31] ZHAO X T, SU Y L, LI Y F, et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances[J]. Journal of Membrane Science, 2014, 450:111-123.
    [32] WANG S Y, FANG L F, CHENG L, et al. Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption[J]. Journal of Membrane Science, 2018, 564:672-681.
    [33] YANG Z, WU Y C, WANG J Q, et al. In situ reduction of silver by polydopamine:A novel antimicrobial modification of a thin-film composite polyamide membrane[J]. Environmental Science & Technology, 2016, 50(17):9543-9550.
    [34] BEN-SASSON M, ZODROW K R, QI G G, et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties[J]. Environmental Science & Technology, 2014, 48(1):384-393.
    [35] CHUNG Y T, MAHMOUDI E, MOHAMMAD A W, et al. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control[J]. Desalination, 2017, 402:123-132.
    [36] ZHANG X R, MA J X, TANG C Y, et al. Antibiofouling polyvinylidene fluoride membrane modified by quaternary ammonium compound:Direct contact-killing versus induced indirect contact-killing[J]. Environmental Science & Technology, 2016, 50(10):5086-5093.
    [37] ZHANG X R, WANG Z W, CHEN M, et al. Membrane biofouling control using polyvinylidene fluoride membrane blended with quaternary ammonium compound assembled on carbon material[J]. Journal of Membrane Science, 2017, 539:229-237.
    [38] ZHANG X R, WANG Z W, TANG C Y, et al. Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation[J]. Journal of Membrane Science, 2018, 549:165-172.
    [39] CHEN M, ZHANG X R, WANG Z W, et al. QAC modified PVDF membranes:Antibiofouling performance, mechanisms, and effects on microbial communities in an MBR treating municipal wastewater[J]. Water Research, 2017, 120:256-264.
    [40] ZHANG X R, PING M, WU Z C, et al. Microfiltration membranes modified by silver-decorated biomimetic silica nanopollens for mitigating biofouling:Synergetic effects of nanopollens and silver nanoparticles[J]. Journal of Membrane Science, 2020, 597:117773.
    [41] KIM J H, CHOI D C, YEON K M, et al. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching[J]. Environmental Science & Technology, 2011, 45(4):1601-1607.
    [42] TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388):518-521.
    [43] MA X H, YAO Z K, YANG Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2):123-130.
    [44] PENG L E, YAO Z K, YANG Z, et al. Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes:Seeing is believing[J]. Environmental Science & Technology, 2020, 54(11):6978-6986.
    [45] ZHU S, ZHAO S, WANG Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. Journal of Membrane Science, 2015, 493:263-274.
    [46] DAI R B, LI J Y, WANG Z W. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes:A review[J]. Advances in Colloid and Interface Science, 2020, 282:102204.
    [47] KARAN S, JIANG Z W, LIVINGSTON A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241):1347-1351.
    [48] WANG J J, YANG H C, WU M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5(31):16289-16295.
    [49] YANG Z, ZHOU Z W, GUO H, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization:Toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2018, 52(16):9341-9349.
    [50] ZHOU Z Y, HU Y X, BOO C, et al. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer[J]. Environmental Science & Technology Letters, 2018, 5(5):243-248.
    [51] ZHU Y Z, XIE W, GAO S J, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination[J]. Small, 2016, 12(36):5034-5041.
    [52] YANG Z, GUO H, TANG C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. Journal of Membrane Science, 2019, 590:117297.
    [53] ZHU J Y, HOU J W, YUAN S S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance[J]. Journal of Materials Chemistry A, 2019, 7(27):16313-16322.
    [54] JEONG B H, HOEK E M V, YAN Y S, et al. Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2):1-7.
    [55] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1:16018.
    [56] YANG Z, MA X H, TANG C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434:37-59.
    [57] TANG C Y, WANG Z N, PETRINI I, et al. Biomimetic aquaporin membranes coming of age[J]. Desalination, 2015, 368:89-105.
    [58] TANG C Y, ZHAO Y, WANG R, et al. Desalination by biomimetic aquaporin membranes:Review of status and prospects[J]. Desalination, 2013, 308:34-40.
    [59] SHEN Y X, SABOE P O, SINES I T, et al. Biomimetic membranes:A review[J]. Journal of Membrane Science, 2014, 454:359-381.
    [60] BARBOIU M, GILLES A. From natural to bioassisted and biomimetic artificial water channel systems[J]. Accounts of Chemical Research, 2013, 46(12):2814-2823.
    [61] MANAWI Y, KOCHKODAN V, HUSSEIN M A, et al. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination[J]. Desalination, 2016, 391:69-88.
    [62] HINDS B J, CHOPRA N, RANTELL T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science, 2004, 303(5654):62-65.
    [63] DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification:A bright future in water desalination[J]. Desalination, 2014, 336:97-109.
    [64] SORRIBAS S, GORGOJO P, TÉLLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2013, 135(40):15201-15208.
    [65] PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6):1946.
    [66] LIU X L, DEMIR N K, WU Z T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. Journal of the American Chemical Society, 2015, 137(22):6999-7002.
    [67] HE Y R, TANG Y P, MA D C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. Journal of Membrane Science, 2017, 541:262-270.
    [68] CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550:380-383.
    [69] HU M, MI B X. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8):3715-3723.
    [70] HU R R, ZHANG R J, HE Y J, et al. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization[J]. Journal of Membrane Science, 2018, 564:813-819.
    [71] XU G R, XU J M, SU H C, et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination:Latest developments and future directions[J]. Desalination, 2019, 451:18-34.
    [72] HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11):11082-11090.
    [73] COHEN-TANUGI D, MCGOVERN R K, DAVE S H, et al. Quantifying the potential of ultra-permeable membranes for water desalination[J]. Energy & Environmental Science, 2014, 7(3):1134-1141.
    [74] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff:The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530.
    [75] SECCHI E, MARBACH S, NIGUōS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619):210-213.
    [76] HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860):188-190.
    [77] DAI R B, GUO H, TANG C Y, et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds[J]. Environmental Science & Technology, 2019, 53(23):13776-13783.
    [78] DAI R B, WANG X Y, TANG C Y, et al. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds[J]. Environmental Science & Technology, 2020, 54(12):7619-7628.
    [79] YANG Z, GUO H, YAO Z K, et al. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes[J]. Environmental Science & Technology, 2019, 53(9):5301-5308.
    [80] YIN J, YANG Z, TANG C Y, et al. Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane[J]. Environmental Science & Technology Letters, 2020, 7(10):766-772.
    [81] CULP T E, SHEN Y X, GEITNER M, et al. Electron tomography reveals details of the internal microstructure of desalination membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35):8694-8699.
    [82] LI Y Q, KŁOSOWSKI M M, MCGILVERY C M, et al. Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers[J]. Journal of Membrane Science, 2017, 534:9-17.
    [83] BARNETT J W, BILCHAK C R, WANG Y, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20):eaaz4301.
    [84] YEO C S H, XIE Q, WANG X N, et al. Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning[J]. Journal of Membrane Science, 2020, 606:118135.
    [85] OROPALLO W, PIEGL L A. Ten challenges in 3D printing[J]. Engineering with Computers, 2016, 32(1):135-148.
    [86] LV J, GONG Z J, HE Z K, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24):12435-12444.
    [87] YUAN S S, STROBBE D, KRUTH J P, et al. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(48):25401-25409.
    [88] SCHUBERT C, VAN LANGEVELD M C, DONOSO L A. Innovations in 3D printing:A 3D overview from optics to organs[J]. The British Journal of Ophthalmology, 2014, 98(2):159-161.
    [89] MA X H, YANG Z, YAO Z K, et al. Interfacial polymerization with electrosprayed microdroplets:Toward controllable and ultrathin polyamide membranes[J]. Environmental Science & Technology Letters, 2018, 5(2):117-122.
    [90] CHOWDHURY M R, STEFFES J, HUEY B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361:682-686.
    [91] KHANZADA N K, FARID M U, KHARRAZ J A, et al.Removal of organic micropollutants using advanced membrane-based water and wastewater treatment:A review[J]. Journal of Membrane Science, 2020, 598:117672.
    [92] MA J X, DAI R B, CHEN M, et al. Applications of membrane bioreactors for water reclamation:Micropollutant removal, mechanisms and perspectives[J]. Bioresource Technology, 2018, 269:532-543.
    [93] KUMAR M, LEE P Y, FUKUSIHMA T, et al. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR[J]. Bioresource Technology, 2012, 113:148-153.
    [94] WANG Z W, MA J X, TANG C Y, et al. Membrane cleaning in membrane bioreactors:A review[J]. Journal of Membrane Science, 2014, 468:276-307.
    [95] QIN J J, KEKRE K A, TAO G H, et al. New option of MBR-RO process for production of NE Water from domestic sewage[J]. Journal of Membrane Science, 2006, 272(1/2):70-77.
    [96] ZHAO Y Y, TONG T Z, WANG X M, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations:A review[J]. Environmental Science & Technology, 2021, 55(3):1359-1376.
    [97] ZHENG J, WANG Z, MA J, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science & Technology, 2018, 52(7):4117-4126.
    [98] ZHENG J J, MA J X, WANG Z W, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration:Mechanisms and implications[J]. Environmental Science & Technology, 2017, 51(5):2757-2765.
    [99] FAN X F, ZHAO H M, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88:285-292.
    [100] LI C, SONG C W, TAO P, et al. Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment[J]. Separation and Purification Technology, 2016, 168:47-56.
    [101] BANI-MELHEM K, ELEKTOROWICZ M. Development of a novel submerged membrane electro-bioreactor (SMEBR):Performance for fouling reduction[J]. Environmental Science & Technology, 2010, 44(9):3298-3304.
    [102] LI J Y, MA J X, DAI R B, et al. Self-enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system[J]. Environmental Science & Technology, 2021, 55(1):655-664.
    [103] REN S J, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15):8666-8673.
    [104] ALMASSI S, LI Z, XU W Q, et al. Simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2019, 53(2):928-937.
    [105] NI L F, ZHU Y J, MA J, et al. Novel strategy for membrane biofouling control in MBR with CdS/MIL-101 modified PVDF membrane by in situ visible light irradiation[J]. Water Research, 2021, 188:116554.
    [106] LEE J, WON Y J, CHOI D C, et al. Micro-patterned membranes with enzymatic quorum quenching activity to control biofouling in an MBR for wastewater treatment[J]. Journal of Membrane Science, 2019, 592:117365.
    [107] SINGH J, SAHARAN V, KUMAR S, et al. Laccase grafted membranes for advanced water filtration systems:A green approach to water purification technology[J]. Critical Reviews in Biotechnology, 2018, 38(6):883-901.
    [108] QI K Q, CHEN M, DAI R B, et al. Development of an electrochemical ceramic membrane bioreactor for the removal of PPCPs from wastewater[J]. Water, 2020, 12(6):1838.
    [109] CHEN M, XU J, DAI R B, et al. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater[J]. Bioresource Technology, 2019, 293:122022.
    [110] CHEN M, REN L H, QI K Q, et al. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor[J]. Bioresource Technology, 2020, 311:123579.
    [111] LI Z Y, DAI R B, YANG B C, et al. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development:Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 404:124198.
    [112] LI F, LI Y X, CAO Y X, et al. Modular engineering toincrease intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis[J]. Nature Communications, 2018, 9:3637.
    [113] WOOD T L, GUHA R, TANG L, et al. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms[J]. PNAS, 2016, 113(20):E2802-E2811.
    [114] ANG W S, TIRAFERRI A, CHEN K L, et al. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent[J]. Journal of Membrane Science, 2011, 376(1/2):196-206.
    [115] NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes:Perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598:117761.
    [116] COUTINHO DE PAULA E, SANTOS AMARAL M C. Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion[J]. Journal of Cleaner Production, 2018, 194:85-93.
    [117] LAWLER W, BRADFORD-HARTKE Z, CRAN M J, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes[J]. Desalination, 2012, 299:103-112.
    [118] LEJARAZU-LARRAÑAGA A, MOLINA S, ORTIZ J M, et al. Circular economy in membrane technology:Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis[J]. Journal of Membrane Science, 2020, 593:117423.
    [119] MORADI M R, PIHLAJAMÄKI A, HESAMPOUR M, et al. End-of-life RO membranes recycling:Reuse as NF membranes by polyelectrolyte layer-by-layer deposition[J]. Journal of Membrane Science, 2019, 584:300-308.
    [120] GARCÍA-PACHECO R, LANDABURU-AGUIRRE J, LEJARAZU-LARRAÑAGA A, et al. Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential[J]. Desalination, 2019, 457:133-143.
    [121] MORÓN-LÓPEZ J, NIETO-REYES L, AGUADO S, et al. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability[J]. Chemosphere, 2019, 231:103-112.
    [122] DAI R B, HAN H Y, WANG T L, et al. Fouling is the beginning:Upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes[J]. Green Chemistry, 2021, 23(2):1013-1025.
    [123] DAI R B, HAN H Y, WANG T L, et al. Cleaning-healing-interfacial polymerization strategy for upcycling real end-of-life polyvinylidene fluoride microfiltration membranes[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30):10352-10360.
    [124] YU Q L, ZHANG Y B. Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor[J]. Nature Communications, 2019, 10:4860.
    [125] ZHU Y J, CAO L J, WANG Y Y. Characteristics of a self-forming dynamic membrane coupled with a bioreactor in application of anammox processes[J]. Environmental Science & Technology, 2019, 53(22):13158-13167.
    [126] MEI X J, WANG Z W, MIAO Y, et al. Recover energy from domestic wastewater using anaerobic membrane bioreactor:Operating parameters optimization and energy balance analysis[J]. Energy, 2016, 98:146-154.
    [127] MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer:Can this be achieved[J]. Environmental Science & Technology, 2011, 45(17):7100-7106.
    [128] SHIN C, MCCARTY P L, KIM J, et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J]. Bioresource Technology, 2014, 159:95-103.
    [129] PETROPOULOS E, DOLFING J, DAVENPORT R J, et al. Developing cold-adapted biomass for the anaerobic treatment of domestic wastewater at low temperatures (4, 8 and 15℃) with inocula from cold environments[J]. Water Research, 2017, 112:100-109.
    [130] CRONE B C, GARLAND J L, SORIAL G A, et al. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product:A review[J]. Water Research, 2016, 104:520-531.
    [131] LI X S, DUTTA A, DONG Q R, et al. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters[J]. Environmental Science & Technology Letters, 2019, 6(4):228-234.
    [132] ANANTHARAMAN A, CHUN Y, HUA T, et al. Pre-deposited dynamic membrane filtration-A review[J]. Water Research, 2020, 173:115558.
    [133] XIE Z F, WANG Z W, WANG Q Y, et al. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment:Performance and microbial community identification[J]. Bioresource Technology, 2014, 161:29-39.
    [134] CHEN G, WU W, XU J, et al. An anaerobic dynamic membrane bioreactor for enhancing sludge digestion:Impact of solids retention time on digestion efficacy[J]. Bioresource Technology, 2021, 329:124864.
    [135] DAI R B, ZHANG X R, LIU M X, et al. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis[J]. Journal of Membrane Science, 2019, 573:46-54.
    [136] PHUNTSHO S, SHON H K, HONG S, et al. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation:Evaluating the performance of fertilizer draw solutions[J]. Journal of Membrane Science, 2011,375(1/2):172-181.
    [137] CHEN L, GU Y S, CAO C Q, et al. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment[J]. Water Research, 2014, 50:114-123.
    [138] PAL P, MANNA A K. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes[J]. Water Research, 2010, 44(19):5750-5760.
    [139] LI W W, YU H Q. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment[J]. Engineering, 2016, 2(4):113-131.
    [140] 曲久辉, 王凯军, 王洪臣, 等. 建设面向未来的中国污水处理概念厂[N]. 中国环境报, 2014-01-07(10).
    引证文献
引用本文

王志伟,戴若彬,张星冉,文越,陈妹,李佳艺.膜法污水处理技术研究应用动态与未来可持续发展思考[J].土木与环境工程学报(中英文),2022,44(3):86-103. WANG Zhiwei, DAI Ruobin, ZHANG Xingran, WEN Yue, CHEN Mei, LI Jiayi. Recent advances and overview on sustainable development of membrane-based wastewater treatment technology[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(3):86-103.10.11835/j. issn.2096-6717.2021.155

复制
分享
文章指标
  • 点击次数:873
  • 下载次数: 1581
  • HTML阅读次数: 1582
  • 引用次数: 0
历史
  • 收稿日期:2021-07-05
  • 在线发布日期: 2022-02-16
文章二维码