Abstract:The development of membrane-based wastewater treatment technology faces two challenges, i.e.:(i) improvement in the environment quality requires high-standard treatment, and (ii) carbon emission peak and carbon neutrality calls for green and sustainable techniques. Under such circumstances, methods to break the bottleneck of water permeability and pollutant removal efficiency trade-off, to reduce the energy consumption and carbon emission of membrane technology, and to stimulate the sustainable development of membrane-based wastewater treatment are of great significance.Recently, remarkable progress in membrane-based wastewater treatment has been achieved in terms of membrane separation fundamentals, antifouling membrane preparation, membrane process innovations, and engineering applications. Current efforts have been dedicated to precise design of membrane materials, functionalization of membrane interface, and process greening transformation. In this work, recent research progress has been reviewed in terms of functional extension of membrane technology/process, design of high-performance membrane materials, sustainable utilization of membranes, and green development of membrane processes. Further analysis and discussion on future development are also presented.In the context of future multi-target needs, multi-functionalization, selective and customized separation, and green development are worthy of in-depth research for promoting the sustainable evolution of membrane-based wastewater treatment technology.