不同胶结程度MICP固化珊瑚砂的无侧限压缩离散元分析
CSTR:
作者:
中图分类号:

TU411.5;X172

基金项目:

国家自然科学基金(51978103、51479208、41831282);基础加强计划技术领域基金(2019-JCJQ-JJ-082)


Discrete element analysis of MICP solidified coral sand with different cementation degrees under unconfined compression test
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用离散元软件建立珊瑚砂微生物固化体无侧限压缩试验模型,通过在珊瑚砂颗粒表面及接触处生成微小碳酸钙颗粒来模拟MICP胶结,考虑珊瑚砂珊瑚砂颗粒、珊瑚砂碳酸钙颗粒及碳酸钙碳酸钙颗粒的接触,分析不同胶结程度微生物珊瑚砂固化体的颗粒位移、微裂纹发展及微裂纹分布等细观特征,解释了其宏观变形和破坏机制。结果表明:在无侧限压缩情况下,主要是材料两端发生较大位移和破坏,中间部分位移较小;数值试样加载过程中,裂纹发展可分为3个阶段,即压密阶段、裂纹扩展阶段及裂纹急剧增长阶段;随着胶结程度的提高,试样从大块脱落破坏向小块或零散颗粒脱落破坏转变,拉、剪裂纹数目比值变小,试样微裂纹数目在各个方向上的差异逐渐减小,裂纹扩展更加均匀。建立的离散元模型能较好地模拟MICP胶结,为更充分地认识珊瑚砂MICP胶结固化体的宏观变形与破坏机制奠定了基础。

    Abstract:

    The unconfined compression test model of biocemented coral sand was established by discrete element software.The model simulates MICP cementation by generating tiny calcium carbonate particles on the surface and contact of the coral sand particles, considering the contact of coral sand-coral sand particles, coral sand-calcium carbonate particles and calcium carbonate-calcium carbonate particles. The microscopic characteristics of biocemented coral sand with different cementation degrees, such as particle displacement, micro-crack development, and micro-crack distribution, were analyzed, which better explained the macroscopic deformation and failure mechanism. Results show that in case of unconfined compression, large displacement and failure occur at both ends of the material, while displacement in the middle part is small. The micro-crack development during the sample loading process can be divided into three stages, namely the compaction stage, the crack propagation stage and the rapid growth stage.With increase of the degree of cementation, the failure of the sample change from large pieces to small pieces or scattered particles, and the ratio of the number of tensile and shear cracks decreases, the difference of the number of microcracks decreases in all directions, and the crack propagation is more uniform.The proposed model can better simulate the cementation of MICP, and lay foundation for full understanding of the macroscopic deformation and failure mechanism of biocemented coral sand.

    参考文献
    [1] DEJONG J T, FRITZGES M B, NVSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11):1381-1392.
    [2] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4):643-653.HE J, CHU J, LIU H L, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4):643-653. (in Chinese)
    [3] NAEIMI M, HADDAD A. Environmental impacts of chemical and microbial grouting[J]. Environmental Science and Pollution Research International, 2020, 27(2):2264-2272.
    [4] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1):1-14.LIU H L, XIAO P, XIAO Y, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1):1-14. (in Chinese)
    [5] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6):1537-1548.QIAN C X, WANG A H, WANG X. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6):1537-1548. (in Chinese)
    [6] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65.
    [7] 申海萌, 李琦, 李霞颖, 等. 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(Sup2):254-262.SHEN H M, LI Q, LI X Y, et al. Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions[J]. Rock and Soil Mechanics, 2018, 39(Sup2):254-262. (in Chinese)
    [8] YANG P, O'DONNELL S, HAMDAN N, et al. 3D DEM simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation[J]. International Journal of Geomechanics, 2017, 17(6):04016143.
    [9] ZHAO X L, EVANS T M. Discrete simulations of laboratory loading conditions[J]. International Journal of Geomechanics, 2009, 9(4):169-178.
    [10] LI Z, WANG Y H, MA C H, et al. Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing[J]. Acta Geotechnica, 2017, 12(5):987-1002.
    [11] 徐东升, 黄明, 黄佛光, 等. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5):1531-1539.XU D S, HUANG M, HUANG F G, et al. Failure behavior of cemented coral sand with different gradations[J]. Rock and Soil Mechanics, 2020, 41(5):1531-1539. (in Chinese)
    [12] YANG P, KAVAZANJIAN E, NEITHALATH N. Particle-scale mechanisms in undrained triaxial compression of biocemented sands:Insights from 3D DEM simulations with flexible boundary[J]. International Journal of Geomechanics, 2019, 19(4):04019009.
    [13] FENG K, MONTOYA B M, EVANS T M. Discrete element method simulations of bio-cemented sands[J]. Computers and Geotechnics, 2017, 85:139-150.
    [14] KHOUBANI A, EVANS T M, MONTOYA B M. Particulate simulations of triaxial tests on bio-cemented sand using a new cementation model[C]//Geo-Chicago 2016. Chicago, Illinois. Reston, VA:American Society of Civil Engineers, 2016.
    [15] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10):2773-2779.FANG X W, SHEN C N, CHU J, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10):2773-2779. (in Chinese)
    [16] FANG X W, YANG Y, CHEN Z, et al. Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal, 2020, 37(6):582-594.
    [17] CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2019, 14(3):615-626.
    [18] EVANS T M, VALDES J R. The microstructure of particulate mixtures in one-dimensional compression:Numerical studies[J]. Granular Matter, 2011, 13(5):657-669.
    [19] KUHN M R, BAGI K. Specimen size effect in discrete element simulations of granular assemblies[J]. Journal of Engineering Mechanics, 2009, 135(6):485-492.
    [20] WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1):29-44.
    [21] WANG Y H, LEUNG S C. Characterization of cemented sand by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(7):992-1004.
    [22] BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12(5):517-525.
    [23] 刘畅, 陈晓雪, 张文, 等. PFC数值模拟中平行粘结细观参数标定过程研究[J]. 价值工程, 2017, 36(26):204-207.LIU C, CHEN X X, ZHANG W, et al. Study on the calibration process of parallel bonding meso-structure parameter in PFC numerical simulation[J]. Value Engineering, 2017, 36(26):204-207. (in Chinese)
    [24] 和睿, 曹冬, 史旦达. 可破碎颗粒材料中螺旋桩贯入特性的离散元模拟[J]. 长江科学院院报, 2021, 38(3):128-136.HE R, CAO D, SHI D D. Discrete element simulations of screw pile drilling in crushable granular materials[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(3):128-136. (in Chinese)
    [25] 蒋明镜, 陈贺, 刘芳. 岩石微观胶结模型及离散元数值仿真方法初探[J]. 岩石力学与工程学报, 2013, 32(1):15-23.JIANG M J, CHEN H, LIU F. A microscopic bond model for rock and preliminary study of numerical simulation method by distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1):15-23. (in Chinese)
    [26] 何树江. 基于颗粒流的灰岩细观力学参数标定方法及其敏感性分析[D]. 济南:山东大学, 2018.HE S J. Calibration method and sensitivity analysis of micromechanic parameters for limestone based on particle flow[D]. Jinan:Shandong University, 2018. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

章懿涛,方祥位,胡丰慧,姚志华,吴焕然,申春妮.不同胶结程度MICP固化珊瑚砂的无侧限压缩离散元分析[J].土木与环境工程学报(中英文),2022,44(4):18-26. ZHANG Yitao, FANG Xiangwei, HU Fenghui, YAO Zhihua, WU Huanran, SHEN Chunni. Discrete element analysis of MICP solidified coral sand with different cementation degrees under unconfined compression test[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(4):18-26.10.11835/j. issn.2096-6717.2021.145

复制
分享
文章指标
  • 点击次数:504
  • 下载次数: 774
  • HTML阅读次数: 593
  • 引用次数: 0
历史
  • 收稿日期:2021-03-24
  • 在线发布日期: 2022-05-06
文章二维码