堆石料的三维应力分数阶本构模型
CSTR:
作者:
中图分类号:

TU452

基金项目:

中央高校基本科研业务费(2017B05214);中国博士后科学基金(2017M621607)


Three-dimensional stress-fractional constitutive model for rockfill
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为合理反映粗粒土的状态依赖非关联应力应变特性,提出应力分数阶塑性力学模型。已有模型基于三轴试验结果,无法对堆石料真三轴条件下的应力应变特性进行预测,为解决这一问题,基于特征应力法对已有分数阶塑性力学模型进行完善。进一步选取不同初始状态条件下堆石料的真三轴压缩试验数据对模型进行验证,结果表明,三维化后的分数阶岩土塑性力学模型可以合理地模拟不同初始状态的堆石料在真三轴压缩条件下的应力应变行为。与传统塑性力学模型相比,提出的分数阶塑性模型在描述堆石料非关联流动时不需要额外引入塑性势函数,仅需对已有屈服面求解分数阶导数。此外,模型在特征应力空间中推导完成再映射到原应力空间,可描述土体的三维强度特性,无需额外采用三维强度准则。

    Abstract:

    The stress-fractional plasticity model has been proposed to model the state-dependent stress-strain behavior of granular soils. However, the previous model was established based on triaxial test, which cannot be easily used to predict the three-dimensional (3D) stress-strain characteristics of rockfill. To solve this problem, an attempt is made to modify the fractional plasticity model for rockfill by using a novel concept of characteristic stress to make the model capable of predicting the 3D stress-strain behavior of rockfill. A series of true triaxial test results of rockfills under different initial states are simulated, from which a good agreement between the model predictions and the corresponding testing results is found. Comparing with the classical plasticity model, no additional plastic potential is required; in addition, the model can describe 3D strength characteristics by mapping from the characteristic stress space to the normal stress space, where no specific 3D strength criterion is needed.

    参考文献
    [1] 刘汉龙, 孙逸飞, 杨贵, 等. 粗粒料颗粒破碎特性研究述评[J]. 河海大学学报(自然科学版), 2012, 40(4):361-369. LIU H L, SUN Y F, YANG G, et al. A review of particle breakage characteristics of coarse aggregates[J]. Journal of Hohai University (Natural Sciences), 2012, 40(4):361-369. (in Chinese)
    [2] 刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4):562-566. LIU H L, QIN H Y, GAO Y F, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4):562-566. (in Chinese)
    [3] 贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9):1692-1697. JIA Y F, WANG B S, CHI S C. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1692-1697. (in Chinese)
    [4] XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I:Influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12):04014070.
    [5] XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4):04014002.
    [6] DAFALIAS Y F, TAIEBAT M. SANISAND-Z:Zero elastic range sand plasticity model[J]. Géotechnique, 2016, 66(12):999-1013.
    [7] 陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10):1489-1495. CHEN S S, FU Z Z, HAN H Q, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10):1489-1495. (in Chinese)
    [8] XIAO Y, LIU H L, CHEN Y M, et al. Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(11):04014064.
    [9] XIAO Y, LIU H L, ZHU J G, et al. Modeling and behaviours of rockfill materials in three-dimensional stress space[J]. Science China Technological Sciences, 2012, 55(10):2877-2892.
    [10] YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4):603-608.
    [11] 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12):2147-2153. YAO Y P, LIU L, LUO T. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12):2147-2153. (in Chinese)
    [12] TIAN Y, YAO Y P. Modelling the non-coaxiality of soils from the view of cross-anisotropy[J]. Computers and Geotechnics, 2017, 86:219-229.
    [13] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3):614-629.
    [14] SUN Y F, XIAO Y. Fractional order plasticity model for granular soils subjected to monotonic triaxial compression[J]. International Journal of Solids and Structures, 2017, 118/119:224-234.
    [15] SUN Y F, SHEN Y. Constitutive model of granular soils using fractional-order plastic-flow rule[J]. International Journal of Geomechanics, 2017, 17(8):04017025.
    [16] LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105:277-290.
    [17] QU P F, ZHU Q Z, SUN Y F. Elastoplastic modelling of mechanical behavior of rocks with fractional-order plastic flow[J]. International Journal of Mechanical Sciences, 2019, 163:105102.
    [18] 李海潮, 马博, 张升, 等. 基于分数阶热弹塑性理论的软岩力学特性描述[J]. 岩石力学与工程学报, 2020, 39(7):1311-1320. LI H C, MA B, ZHANG S, et al. Mechanical behaviors of soft rocks based on the fractional thermal elastic-plastic theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7):1311-1320. (in Chinese)
    [19] SUN Y, XIAO Y. Fractional order model for granular soils under drained cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4):555-577.
    [20] SUN Y, GAO Y, SHEN Y. Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading[J]. Géotechnique, 2019, 69(2):158-165.
    [21] LU D C, MA C, DU X L, et al. Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept[J]. International Journal of Geomechanics, 2017, 17(2):04016058.
    [22] SCHOFIELD A, WROTH P. Critical state soil mechanics[M]. New York, USA:McGraw-Hill London, 1968.
    [23] PODLUBNY I. Fractional differential equations:An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego, California:Academic press, 1998.
    [24] SUN Y F, NIMBALKAR S. Stress-fractional soil model with reduced elastic region[J]. Soils and Foundations, 2019, 59(6):2007-2023.
    [25] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4):449-460.
    [26] MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974, 232:59-70.
    [27] SUN Y F, WICHTMANN T, SUMELKA W, et al. Karlsruhe fine sand under monotonic and cyclic loads:Modelling and validation[J]. Soil Dynamics and Earthquake Engineering, 2020, 133:106119.
    [28] XIAO Y, LIU H L, ZHU J G, et al. A 3D bounding surface model for rockfill materials[J]. Science China Technological Sciences, 2011, 54(11):2904-2915.
    相似文献
    引证文献
引用本文

吉华,孙逸飞.堆石料的三维应力分数阶本构模型[J].土木与环境工程学报(中英文),2022,44(4):27-34. JI Hua, SUN Yifei. Three-dimensional stress-fractional constitutive model for rockfill[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(4):27-34.10.11835/j. issn.2096-6717.2020.154

复制
分享
文章指标
  • 点击次数:307
  • 下载次数: 647
  • HTML阅读次数: 484
  • 引用次数: 0
历史
  • 收稿日期:2020-07-23
  • 在线发布日期: 2022-05-06
文章二维码