基于多维度聚类算法的重庆住宅空调使用特征分析
CSTR:
作者:
基金项目:

国家重点研发计划(2018YFD1100704)


Characteristics of occupants' behavior in Chongqing residential air-conditioning based on multi-dimensional clustering algorithm
Author:
  • XUE Kai

    XUE Kai

    School of Civil Engineering; National Centre for International Research of Low-Carbon and Green Building; Joint International Research Laboratory of Green Building and Built Environment; Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, Chongqing University, Chongqing 400045, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Meng

    LIU Meng

    School of Civil Engineering; National Centre for International Research of Low-Carbon and Green Building; Joint International Research Laboratory of Green Building and Built Environment; Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, Chongqing University, Chongqing 400045, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Lu

    YAN Lu

    School of Civil Engineering; National Centre for International Research of Low-Carbon and Green Building; Joint International Research Laboratory of Green Building and Built Environment; Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, Chongqing University, Chongqing 400045, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Yujie

    HE Yujie

    School of Civil Engineering; National Centre for International Research of Low-Carbon and Green Building; Joint International Research Laboratory of Green Building and Built Environment; Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, Chongqing University, Chongqing 400045, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长江流域夏季炎热、冬季阴冷,全年高湿,室内热环境恶劣,多样化的空调使用习惯对住宅供暖空调能耗有重要影响。大数据技术发展为更大样本、更高精度、更多维度的空调行为监测提供了基础,弥补了现有研究方法误差大和分类指标单一的不足。选取重庆市作为长江流域典型城市的代表,随机抽取2 000台住宅房间空调器样本,从空调使用时长、温度需求及能耗角度,构建空调运行的5个特征参数,采用多维度聚类算法识别出重庆地区空调使用习惯的典型类别,通过深入分析不同使用习惯类别的特征差异,总结出三类典型群体。

    Abstract:

    With a hot summer, cold winter and high humidity climate, residential energy consumption in the Yangtze River Basin is strongly affected by diverse air-conditioning behaviors in such a harsh indoor thermal environment. The development of big data technology provides a basis for larger samples, higher accuracy, and more dimensions of air-conditioning behavior monitoring, which can make up for the current situation of large errors in existing research methods and single classification indicators. By selecting 2 000 samples of residential room air conditioners (RACs) in Chongqing as the representative city: First, five characteristic parameters of air-conditioning operation are constructed from the perspective of air-conditioning using period, temperature demand and energy consumption; Then, a multi-dimensional clustering algorithm was used to identify the typical categories of air-conditioning behavior;Finally,through in-depth analysis of the characteristic differences among the clustering results, three typical air-conditioning behavior groups are summarized for residential buildings in Chongqing.

    参考文献
    [1] 国家统计局. 城镇居民平均每百户年末主要耐用消费品拥有量[Z]. 北京:中国统计出版社, 2020.National Bureau of Statistics of China. Main durable goods owned per 100 urban households at year-end[Z]. Beijing:China Statistics Press, 2020. (in Chinese)
    [2] 龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4):1-17.LONG W D, LIANG H. Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J]. Heating Ventilating & Air Conditioning, 2021, 51(4):1-17. (in Chinese)
    [3] 高岩, 安玉娇, 于喜哲, 等. 住宅使用模式对住宅建筑供暖空调能耗影响的模拟分析[J]. 建筑科学, 2010, 26(10):287-291.GAO Y, AN Y J, YU X Z, et al.Simulation analysis of the influence of residential use pattern on heating and air-conditioning energy consumption of residential buildings[J]. Building Science, 2010, 26(10):287-291. (in Chinese)
    [4] CHEN S, ZHANG G M, XIA X B, et al. A review of internal and external influencing factors on energy efficiency design of buildings[J]. Energy and Buildings, 2020, 216:109944.
    [5] GUO S Y, YAN D, PENG C, et al. Investigation and analyses of residential heating in the HSCW climate zone of China:Status quo and key features[J]. Building and Environment, 2015, 94:532-542.
    [6] 何玥儿. 基于量质分析的夏热冬冷地区住宅热环境营造技术优化研究[D]. 重庆:重庆大学, 2017.HE Y E. Quantity-quality-based optimization of indoor thermal environment for residential buildings in hot summer and cold winter climate zones[D]. Chongqing:Chongqing University, 2017. (in Chinese)
    [7] 侯珊珊, 刘猛, 晏璐, 等.运用社会化聆听方法的非集中供暖区住户对冬季室内热环境不满的分析[J].土木与环境工程学报(中英文), 2021, 43(1):215-228.HOU S S, LIU M, YAN L, et al. Dissatisfaction expressed by occupants with winter indoor thermal environment in the non-district heating zone based on the social listening method full-text in English[J]. Journal of Civil and Environmental Engineering, 2021, 43(1):215-228. (in Chinese)
    [8] RYAN E M, SANQUIST T F. Validation of building energy modeling tools under idealized and realistic conditions[J]. Energy and Buildings, 2012, 47:375-382.
    [9] YAN D, XIA J J, TANG W Y, et al. DeST:An integrated building simulation toolkit. Part I:Fundamentals[J]. Building Simulation, 2008, 1(2):95-110.
    [10] KNIGHT I, STRAVORAVDIS S, LASVAUX S. Assessing the operational energy profiles of UK educational buildings:Findings from detailed surveys compared to measured consumption[C]//2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century. Crete, Greece. 2021:531-536
    [11] 燕达, 丰晓航, 王闯, 等. 建筑中人行为模拟研究现状和展望[J]. 建筑科学, 2015, 31(10):178-187.YAN D, FENG X H, WANG C, et al. Current state and future perspective of occupant behavior simulation in buildings[J]. Building Science, 2015, 31(10):178-187. (in Chinese)
    [12] HOES P, HENSEN J L M, LOOMANS M G L C, et al. User behavior in whole building simulation[J]. Energy and Buildings, 2009, 41(3):295-302.
    [13] 刘猛, 薛凯, 衷逸群, 等. 典型城市居住建筑室内设置温度对供暖供冷能耗的影响[J]. 土木建筑与环境工程, 2015, 37(Sup2):204-210.LIU M, XUE K, ZHONG Y Q, et al. Impact of indoor setting temperature on heating and cooling energy consumption in selected cities[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(Sup2):204-210. (in Chinese)
    [14] 涂正革, 谌仁俊. 中国碳排放区域划分与减排路径:基于多指标面板数据的聚类分析[J]. 中国地质大学学报(社会科学版), 2012, 12(6):7-13, 136.TU Z G, CHEN R J. Analysis on China's carbon emission division and reduction path:Based on multivariate panel data clustering analysis method[J]. Journal of China University of Geosciences (Social Sciences Edition), 2012, 12(6):7-13, 136. (in Chinese)
    [15] 陈焕新, 孙劭波, 刘江岩, 等. 数据挖掘技术在制冷空调行业的应用[J]. 暖通空调, 2016, 46(3):20-26.CHEN H X, SUN S B, LIU J Y, et al. Application of data mining technology to refrigeration and air conditioning industry[J]. Heating Ventilating & Air Conditioning, 2016, 46(3):20-26. (in Chinese)
    [16] 陈焕新, 刘江岩, 胡云鹏, 等. 大数据在空调领域的应用[J]. 制冷学报, 2015, 36(4):16-22.CHEN H X, LIU J Y, HU Y P, et al. Application of big data in air-conditioning field[J]. Journal of Refrigeration, 2015, 36(4):16-22. (in Chinese)
    [17] YU Z, FUNG B C M, HAGHIGHAT F, et al. A systematic procedure to study the influence of occupant behavior on building energy consumption[J]. Energy and Buildings, 2011, 43(6):1409-1417.
    [18] 康旭源, 燕达, 孙红三, 等. 基于人员位置大数据的建筑人员作息模式研究[J]. 暖通空调, 2020, 50(7):1-10, 90.KANG X Y, YAN D, SUN H S, et al. Typical occupancy profiles in buildings based on big data of mobile positioning[J]. Heating Ventilating & Air Conditioning, 2020, 50(7):1-10, 90. (in Chinese)
    [19] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016. (in Chinese)
    [20] 晋远, 燕达, 安晶晶, 等. 基于自编码算法聚类的城镇住宅建筑日用电典型模式分析[J]. 建筑科学, 2 potential of a residential area in Chongqing[J]. Refrigeration & Air Conditioning, 2014, 28(6):694-697. (in Chinese)esidential buildings from clustering analysis based on auto-encoder algorithm[J]. Building Science, 2020, 36(2):1-7, 43. (in Chinese)
    [21] 张良均, 谭立云, 刘名军. Python数据分析与挖掘实战[M]. 2版. 北京:机械工业出版社, 2020.ZHANG L J, TAN L Y, LIU M J. Hands-on data analysis and data mining with Python[M]. Beijing:China Machine Press, 2020. (in Chinese)
    [22] YAN L, LIU M, XUE K, et al. A study on temperature-setting behavior for room air conditioners based on big data[J]. Journal of Building Engineering, 2020, 30:101197.
    [23] ROUSSEEUW P J. Silhouettes:A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65.
    [24] TARDIOLI G, KERRIGAN R, OATES M, et al. Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach[J]. Building and Environment, 2018, 140:90-106.
    [25] 程飞, 张旭, 张莉莉, 等. 夏热冬冷地区住宅分体式空调容量需求分析[J]. 建筑科学, 2016, 32(8):154-158.CHENG F, ZHANG X, ZHANG L L, et al. Analysis on capacity of the split type air conditioner in residential building in hot summer and cold winter area[J]. Building Science, 2016, 32(8):154-158. (in Chinese)
    [26] 张旭, 程飞, 黄奕翔, 等. 变频空调器间歇供冷能耗特征测试分析[J]. 暖通空调, 2020, 50(4):8-13.ZHANG X, CHENG F, HUANG Y X, et al. Test and analysis of energy consumption characteristics of variable speed air conditioner intermittent cooling[J]. Heating Ventilating & Air Conditioning, 2020, 50(4):8-13. (in Chinese)
    [27] 张晓洁. 长沙办公建筑间歇空调能耗模拟分析[D]. 长沙:湖南大学, 2011.ZHANG X J. Simulation and analysis on energy consumption of air-conditioned intermittent operation in an office building in Changsha[D]. Changsha:Hunan University, 2011. (in Chinese)
    [28] 刘晓庆. 间歇空调运行模式下住宅墙体热工性能研究[D]. 重庆:重庆大学, 2011.LIU X Q. Study on the thermal performance of residential walls in intermittent air conditioning run mode[D]. Chongqing:Chongqing University, 2011. (in Chinese)
    [29] 民用建筑供暖通风与空气调节设计规范:GB 50736-2012[S]. 北京:中国建筑工业出版社, 2012:288.Design code for heating ventilation and air conditioning of civil buildings:GB 50736-2012[S]. Beijing:China Architecture & Building Press, 2012:288. (in Chinese)
    [30] 刘猛, 晏璐, 李金波, 等. 大数据监测平台下的长江流域典型城市房间空调器温度设置分析[J]. 土木与环境工程学报(中英文), 2019, 41(5):164-172.LIU M, YAN L, LI J B, et al. Analysis of temperature setting habits of room air conditioners in the typical cities in Yangtze River Basin under the big data monitoring platform[J]. Journal of Civil and Environmental Engineering, 2019, 41(5):164-172. (in Chinese)
    [31] 陈勰, 熊宸, 程楠, 等. 空调与自然通风工况下用户个性化特征对热舒适影响分析[J]. 制冷与空调, 2021, 35(2):182-188.CHEN X, XIONG C, CHENG N, et al. Impact of the occupants' personalized characters on thermal comfort in air-conditioned and natural ventilation environment[J]. Refrigeration & Air Conditioning, 2021, 35(2):182-188. (in Chinese)
    [32] 简毅文, 李清瑞, 白贞, 等. 住宅夏季空调行为对空调能耗的影响研究[J]. 建筑科学, 2011, 27(12):16-19, 86.JIAN Y W, LI Q R, BAI Z, et al. Study on influences of usage behavior of residential air handling unit on energy consumption in summer[J]. Building Science, 2011, 27(12):16-19, 86. (in Chinese)
    [33] 谭晶月. 基于大数据的重庆地区住宅建筑房间空调器使用特征研究[D]. 重庆:重庆大学, 2018.TAN J Y. Research on the use characteristics of room air conditioners in residential buildings in Chongqing based on big data[D]. Chongqing:Chongqing University, 2018. (in Chinese)
    [34] 郭祺. 通风对重庆地区卧室房间空调器用能的影响研究[D]. 重庆:重庆大学, 2018.GUO Q. Influence of ventilation on the energy consumption of air conditioning in the bedroom in Chongqing[D]. Chongqing:Chongqing University, 2018. (in Chinese)
    [35] JIANG H C, YAO R M, HAN S Y, et al. How do urban residents use energy for winter heating at home? A large-scale survey in the hot summer and cold winter climate zone in the Yangtze River region[J]. Energy and Buildings, 2020, 223:110131.
    [36] 柴盼, 刘旭, 翁庙成, 等. 重庆某住宅小区能耗特征与节能潜力研究[J]. 制冷与空调, 2014, 28(6):694-697.CHAI P, LIU X, WENG M C, et al. Research on energy consumption characteristics and energy saving potential of a residential area in Chongqing[J]. Refrigeration & Air Conditioning, 2014, 28(6): 694-697. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛凯,刘猛,晏璐,何昱洁.基于多维度聚类算法的重庆住宅空调使用特征分析[J].土木与环境工程学报(中英文),2022,44(4):167-175. XUE Kai, LIU Meng, YAN Lu, HE Yujie. Characteristics of occupants' behavior in Chongqing residential air-conditioning based on multi-dimensional clustering algorithm[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(4):167-175.10.11835/j. issn.2096-6717.2021.242

复制
分享
文章指标
  • 点击次数:356
  • 下载次数: 1126
  • HTML阅读次数: 606
  • 引用次数: 0
历史
  • 收稿日期:2021-08-11
  • 在线发布日期: 2022-05-06
文章二维码