基于证据权和卡方自动交互检测决策树的滑坡易发性预测
CSTR:
作者:
中图分类号:

P642.22

基金项目:

国家自然科学基金(52109089、41807285)


Landslide susceptibility prediction modeling based on weight of evidence and chi-square automatic interactive detection decision tree
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    滑坡与其环境因子间的非线性关联计算影响滑坡易发性预测建模的不确定性。为研究不确定性因素下易发性建模规律,以中国延长县为例,获取82处滑坡和14种环境因子,通过频率比(Frequency Ratio,FR)和证据权(Weight of Evidence,WOE)等关联法与卡方自动交互检测(Chi-squared Automatic Interaction Detector,CHAID)决策树相耦合进行建模,并用原始环境因子(称为“原始因子数据"”)作为输入变量的单独CHAID决策树进行对比。使用精度、易发性指数均值、标准差和平均秩等评价易发性建模的不确定性。结果表明:WOE-CHAID模型预测的滑坡易发性不确定性低于FR-CHAID模型,可见WOE具有较优秀的非线性关联性能;单独CHAID决策树预测的易发性精度整体略低于WOE-CHAID和FR-CHAID模型,但其建模效率较高;在体现滑坡与其环境因子空间关联性方面,考虑FR和WOE关联法的CHAID决策树模型优势显著。WOE是更优秀的关联分析法,CHAID决策树预测性能好且预测效率高,WOE-CHAID决策树模型的易发性预测不确定性较低且更符合实际滑坡概率分布特征。

    Abstract:

    The calculation of the non-linear correlation between the landslide inventories and their environmental factors is an important factor that affects the uncertainty of the landslide susceptibility prediction (LSP) modeling. In order to study the changing patterns of LSP under the influence of the uncertain factors, taking Yanchang County of China as example, 82 landslides and 14 environmental factors are obtained, and the frequency ratio (FR) and weight of evidence (WOE) connection methods are coupled with the chi-squared automatic interaction detector (CHAID) decision tree model to carry out LSP. Then the original environmental factors data (hereinafter referred to as "original data") is used as the input variable to compare the individual CHAID decision tree model to realize the analysis of LSP modeling pattern. ROC accuracy, mean, standard deviation, and average rank are adopted to analyze the uncertainty characteristics in the LSP modeling process. Results show that:1) LSP uncertainty of the WOE-CHAID model is lower than that of the FR-CHAID model, and WOE has relatively excellent nonlinear correlation performance. 2) The prediction accuracy of individual CHAID decision tree model is slightly lower than that of the WOE-CHAID and FR-CHAID models, but it has higher modeling efficiency. 3) In terms of reflecting the spatial correlation between landslides and its environmental factors, the CHAID decision tree model coupled with FR and WOE connection methods have significant advantages. Generally, WOE is a better connection method and CHAID decision tree model has good prediction performance and high prediction efficiency. Susceptibility prediction by the WOE-CHAID decision tree model is less uncertain and more in line with the actual landslide probability distribution characteristics.

    参考文献
    [1] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1):156-167. HUANG F M, YIN K L, JIANG S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1):156-167. (in Chinese)
    [2] 黄发明, 叶舟, 姚池, 等. 滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 2020, 45(12):4535-4549. HUANG F M, YE Z, YAO C, et al. Uncertainties of landslide susceptibility prediction:Different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020, 45(12):4535-4549. (in Chinese)
    [3] 李利峰, 张晓虎, 邓慧琳, 等. 基于熵指数与逻辑回归耦合模型的滑坡灾害易发性评价:以蓝田县为例[J]. 科学技术与工程, 2020, 20(14):5536-5543. LI L F, ZHANG X H, DENG H L, et al. Assessment of landslide susceptibility based on coupling model of index of entropy and logistic regression:A case study of Lantian County[J]. Science Technology and Engineering, 2020, 20(14):5536-5543. (in Chinese)
    [4] HUANG F M, CAO Z S, JIANG S H, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model[J]. Landslides, 2020, 17(12):2919-2930.
    [5] HUANG F M, CAO Z S, GUO J F, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. CATENA, 2020, 191:104580.
    [6] 杨光, 徐佩华, 曹琛, 等. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报, 2019, 27(5):1153-1163. YANG G, XU P H, CAO C, et al. Assessment of regional landslide susceptibility based on combined model of certainty factor method[J]. Journal of Engineering Geology, 2019, 27(5):1153-1163. (in Chinese)
    [7] 许嘉慧, 孙德亮, 王月, 等. 基于GIS与改进层次分析法的奉节县滑坡易发性区划[J]. 重庆师范大学学报(自然科学版), 2020, 37(2):36-44, 2, 142. XU J H, SUN D L, WANG Y, et al. Landslide susceptibility mapping of Fengjie County based on GIS and improved analytic hierarchy process[J]. Journal of Chongqing Normal University (Natural Science), 2020, 37(2):36-44, 2, 142. (in Chinese)
    [8] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6):1155-1169. HUANG F M, CHEN J W, TANG Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6):1155-1169. (in Chinese)
    [9] 杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6):189-197. YANG Y G, YIN K L, ZHAO H Y, et al. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 2019, 38(6):189-197. (in Chinese)
    [10] 田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12):2304-2316. TIAN N M, LAN H X, WU Y M, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12):2304-2316. (in Chinese)
    [11] 乔世范, 王超. 基于遗传模拟退火算法的滑坡位移预测方法[J]. 土木与环境工程学报(中英文), 2021, 43(1):25-35. QIAO S F, WANG C. Landslide displacement prediction based on the Genetic Simulated Annealing algorithm[J]. Journal of Civil and Environmental Engineering, 2021, 43(1):25-35. (in Chinese)
    [12] 吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1):321-330. WU R Z, HU X D, MEI H B, et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges reservoir area[J]. Earth Science, 2021, 46(1):321-330. (in Chinese)
    [13] 牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2012, 42(2):430-439. NIU R Q, PENG L, YE R Q, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2):430-439. (in Chinese)
    [14] ALTHUWAYNEE O F, PRADHAN B, AHMAD N. Landslide susceptibility mapping using decision-tree based Chi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration[J]. IOP Conference Series:Earth and Environmental Science, 2014, 20:012032.
    [15] CHEN W W, ZHANG S. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling[J]. CATENA, 2021, 203:105344.
    [16] DEMIR G. GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Reşadiye and Koyulhisar (Turkey)[J]. CATENA, 2019, 183:104211.
    [17] 张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8):1595-1610. ZHANG Q K, LING S X, LI X N, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8):1595-1610. (in Chinese)
    [18] HUANG F M, ZHANG J, ZHOU C B, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17(1):217-229.
    [19] 刘璐瑶, 高惠瑛. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J/OL]. 工程地质学报. https://doi.org/10.13544/j.cnki.jeg.2020-482. LIU L Y, GAO H Y. Landslide susceptibility assessment based on coupling of WOE model and Logistic regression model[J/OL]. Journal of Engineering Geology. https://doi.org/10.13544/j.cnki.jeg.2020-482. (in Chinese)
    [20] 徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法:以陕西省为例[J]. 武汉大学学报·信息科学版, 2020, 45(8):1214-1222. XU S H, LIU J P, WANG X H, et al. Landslide susceptibility assessment method incorporating index of entropy based on support vector machine:A case study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8):1214-1222. (in Chinese)
    [21] 杨华阳, 许向宁, 杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报, 2020, 31(3):20-29. YANG H Y, XU X N, YANG H F. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3):20-29. (in Chinese)
    [22] ZHANG T Y, HAN L, CHEN W, et al. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling[J]. Entropy, 2018, 20(11):884.
    [23] 李文彬, 范宣梅, 黄发明, 等. 不同环境因子联接方法和数据驱动模型对滑坡易发性预测建模的影响规律[J/OL]. 地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20210506.1457.004.html. LI W B, FAN X M, HUANG F M, et al. Influence law of different environmental factor connection methods and data-based models on landslide susceptibility prediction modeling[J/OL]. Earth Science. https://kns.cnki.net/kcms/detail/42.1874.P.20210506.1457.004.html. (in Chinese)
    [24] 张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1):157-171. ZHANG Z Y, DENG M G, XU S G, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J/OL]. Chinese Journal of Rock Mechanics and Engineering. 2022, 41(1):157-171. (in Chinese)
    [25] 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2):287-300. GUO Z Z, YIN K L, HUANG F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2):287-300. (in Chinese)
    [26] KONTOES C, LOUPASAKIS C, PAPOUTSIS I, et al. Landslide susceptibility mapping of central and western Greece, combining NGI and WoE methods, with remote sensing and ground truth data[J]. Land, 2021, 10(4):402.
    [27] LI W B, FAN X M, HUANG F M, et al. Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS:Influences of different data-based models and connections between collapses and environmental factors[J]. Remote Sensing, 2020, 12(24):4134.
    [28] 车文超, 秦胜伍, 苗强, 等. 滑坡敏感性评价中因子分类方法的研究[J]. 工程地质学报, 2020, 28(Sup1):116-124. CHE W C, QIN S W, MIAO Q, et al. Research on factor classification method of landslide susceptibility mapping[J].[J].Journal of Engineering Geology, 2020, 28(Sup1):116-124. (in Chinese)
    [29] 罗路广, 裴向军, 崔圣华, 等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报, 2021, 40(11):2306-2319. LUO L G, PEI X J, CUI S H, et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11):2306-2319. (in Chinese)
    [30] GUO Z Z, SHI Y, HUANG F M, et al. Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management[J]. Geoscience Frontiers, 2021, 12(6):101249.
    [31] 郭天颂, 张菊清, 韩煜, 等. 基于粒子群优化支持向量机的延长县滑坡易发性评价[J]. 地质科技情报, 2019, 38(3):236-243. GUO T S, ZHANG J Q, HAN Y, et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine[J]. Geological Science and Technology Information, 2019, 38(3):236-243. (in Chinese)
    [32] HUANG F M, TAO S Y, CHANG Z L, et al. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments[J]. Landslides, 2021, 18(11):3715-3731.
    [33] 沈玲玲, 刘连友, 许冲, 等. 基于多模型的滑坡易发性评价:以甘肃岷县地震滑坡为例[J]. 工程地质学报, 2016, 24(1):19-28. SHEN L L, LIU L Y, XU C, et al. Multi-models based landslide susceptibility evaluation:Illustrated with landslides triggered by Minxian earthquake[J]. Journal of Engineering Geology, 2016, 24(1):19-28. (in Chinese)
    [34] 杨世豪, 苏立君, 张崇磊, 等. 强降雨作用下昔格达边坡渗流特性及稳定性分析[J]. 土木与环境工程学报(中英文), 2020, 42(4):19-27. YANG S H, SU L J, ZHANG C L, et al. Analysis of seepage characteristics and stability of Xigeda formation slope under heavy rainfall[J]. Journal of Civil and Environmental Engineering, 2020, 42(4):19-27. (in Chinese)
    [35] 于宪煜, 胡友健, 牛瑞卿. 基于RS-SVM模型的滑坡易发性评价因子选择方法研究[J]. 地理与地理信息科学, 2016, 32(3):23-28, 2. YU X Y, HU Y J, NIU R Q. Research on the method to select landslide susceptibility evaluation factors based on RS-SVM model[J]. Geography and Geo-Information Science, 2016, 32(3):23-28, 2. (in Chinese)
    [36] 吴雨辰, 周晗旭, 车爱兰. 基于粗糙集[XC半字线.tif,JZ]神经网络的IBURI地震滑坡易发性研究[J]. 岩石力学与工程学报, 2021, 40(6):1226-1235. WU Y C, ZHOU H X, CHE A L. Susceptibility of landslides caused by IBURI earthquake based on rough set-neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6):1226-1235. (in Chinese)
    [37] 黄发明, 汪洋, 董志良, 等. 基于灰色关联度模型的区域滑坡敏感性评价[J]. 地球科学, 2019(2):664-676. HUANG F M, WANG Y, DONG Z L, et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science, 2019(2):664-676. (in Chinese)
    [38] 许英姿, 卢玉南, 李东阳, 等. 基于GIS和信息量模型的广西花岗岩分布区滑坡易发性评价[J]. 工程地质学报, 2016, 24(4):693-703. XU Y Z, LU Y N, LI D Y, et al. GIS and information model based landslide susceptibility assessment in granite area of Guangxi Province[J]. Journal of Engineering Geology, 2016, 24(4):693-703. (in Chinese)
    [39] 解明礼, 巨能攀, 赵建军, 等. 区域地质灾害易发性分级方法对比分析研究[J]. 武汉大学学报·信息科学版, 2021, 46(7):1003-1014. XIE M L, JU N P, ZHAO J J, et al. Comparative analysis on classification methods of geological disaster susceptibility assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):1003-1014. (in Chinese)
    [40] ZHU L, WANG G J, HUANG F M, et al. Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 4029, PP(99):1-5.
    [41] SAHA A, SAHA S. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling:A study on Kurseong region of Darjeeling Himalaya, India[J]. Remote Sensing Applications:Society and Environment, 2020, 19:100323.
    [42] SANDRIC I, IONITA C, CHITU Z, et al. Using CUDA to accelerate uncertainty propagation modelling for landslide susceptibility assessment[J]. Environmental Modelling & Software, 2019, 115:176-186.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄发明,石雨,欧阳慰平,洪安宇,曾子强,徐富刚.基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J].土木与环境工程学报(中英文),2022,44(5):16-28. HUANG Faming, SHI Yu, OUYANG Weiping, HONG Anyu, ZENG Ziqiang, XU Fugang. Landslide susceptibility prediction modeling based on weight of evidence and chi-square automatic interactive detection decision tree[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(5):16-28.10.11835/j. issn.2096-6717.2021.254

复制
分享
文章指标
  • 点击次数:472
  • 下载次数: 996
  • HTML阅读次数: 464
  • 引用次数: 0
历史
  • 收稿日期:2021-09-02
  • 在线发布日期: 2022-06-28
文章二维码