基于标贯试验的砂土液化概率判别法
CSTR:
作者:
中图分类号:

TU435

基金项目:

国家自然科学基金(41672276);科技部创新人才推进计划重点领域创新团队项目(2016RA4059);上海市教育发展基金会和上海市教育委员会曙光计划(19SG19)


Probabilistic evaluation of sand liquefaction potential based on standard penetration test
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    合理地对建设场地进行液化判别是降低液化灾害的基础。中国规范通过比较临界标贯击数与实测标贯击数的相对大小来判别砂土液化,但由于建立经验判别准则的过程中存在大量的不确定性因素,故这种确定性方法不是衡量砂土液化的准确指标。针对这个问题,基于中国标贯试验的液化案例库,利用极大似然法对4种广义线性模型进行参数标定,建立适用于中国的液化概率判别模型。结果表明:当液化概率较小时,4种广义线性模型差异显著;当液化概率在30%~70%之间时,4种模型的预测结果相近。模型比较表明,Log-log模型对案例库的拟合效果最好,给出了基于Log-log模型的液化概率计算公式及指定液化概率下的标贯击数临界值计算公式。回判分析表明,提出的液化概率判别模型的总体回判成功率高于现行建筑抗震设计规范。

    Abstract:

    Reasonable liquefaction assessment of construction sites is the basis of mitigating liquefaction hazards. The current Chinese seismic design code evaluates the liquefaction potential by comparing the critical value of standard penetration test blow count with the measured value. However, due to the significant uncertainties associated with the process of establishing empirical liquefaction criteria, the deterministic method is not an accurate measurement for evaluating the liquefaction potential. To solve this problem, the maximum likehood method is used to calibrate the parameters of four generalized linear models based on the liquefaction case base of Chinese standard penetration test, and four probabilistic evaluation models applied to China are established. The results show that the four generalized linear models differ significantly when the liquefaction probability is small, and the prediction results of the four models are similar when the liquefaction probability is between 30% and 70%. Comparison of the models shows that the Log-log model fits the database best. The formulas for calculating the liquefaction probability and the critical value of standard penetration test blow count under specified liquefaction probability based on the Log-log model are provided. The results of verification analysis show that the overall judgment success ratio of the proposed probabilistic evaluation model of liquefaction is higher than the current Chinese seismic design code.

    参考文献
    [1] RAUCH A F. EPOLLS:An empirical method for predicting surface displacements due to liquefaction-induced lateral spreading in earthquakes[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1997.
    [2] 陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013, 29(3):1-9. CHEN L W, YUAN X M, SUN R. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw[KG-0.5mm]6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3):1-9. (in Chinese)
    [3] 建筑抗震设计规范(2016年版):GB 50011-2010[S]. 北京:中国建筑工业出版社, 2016. Code for Seismic Design of Buildings (2016):GB 50011-2010[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
    [4] SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9):1249-1273.
    [5] SEED H B, TOKIMATSU K, HARDER L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12):1425-1445.
    [6] YOUD T L, IDRISS I M. Liquefaction resistance of soils:Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4):297-313.
    [7] CETIN K O, KIUREGHIAN A D, SEED R B. Probabilistic models for the initiation of seismic soil liquefaction[J]. Structural Safety, 2002, 24(1):67-82.
    [8] BOULANGER R W, IDRISS I M. Probabilistic standard penetration test-based liquefaction-triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10):1185-1195.
    [9] CHEN C J, JUANG C H. Calibration of SPT-and CPT-based liquefaction evaluation methods[C]//Geo-Denver 2000. August 5-8, 2000, Denver, Colorado, USA. Reston, VA, USA:American Society of Civil Engineers, 2000:49-64.
    [10] CHRISTIAN J T, SWIGER W F. Statistics of liquefaction and SPT results[J]. Journal of the Geotechnical Engineering Division, 1975, 101(11):1135-1150.
    [11] LAI S Y, HSU S C, HSIEH M J. Discriminant model for evaluating soil liquefaction potential using cone penetration test data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12):1271-1282.
    [12] LIAO S S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, 1988, 114(4):389-411.
    [13] YOUD T L, NOBLE S K. Liquefaction criteria based statistical and probabilistic analysis:Tech. Rep. No. NCEER-97-0022[R]. Buffalo, N.Y.:State University of New York at Buffalo, 1997:201-216.
    [14] TOPRAK S, HOLZER T L, BENNETT M J, et al. CPT-and SPT-based probabilistic assessment of liquefaction[C]//Proc., 7th US-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction. Buffalo, NY:Multidisciplinary Center for Earthquake Engineering Research, 1999:69-86.
    [15] JUANG C H, JIANG T, ANDRUS R D. Assessing probability-based methods for liquefaction potential evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7):580-589.
    [16] 潘建平, 孔宪京, 邹德高. 基于Logistic回归模型的砂土液化概率评价[J]. 岩土力学, 2008, 29(9):2567-2571. PAN J P, KONG X J, ZOU D G. Probabilistic evaluation of sand liquefaction based on Logistic regression model[J]. Rock and Soil Mechanics, 2008, 29(9):2567-2571. (in Chinese)
    [17] 袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4):99-108. YUAN X M, CAO Z Z. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4):99-108. (in Chinese)
    [18] GOH A T C. Seismic liquefaction potential assessed by neural networks[J]. Journal of Geotechnical Engineering, 1994, 120(9):1467-1480.
    [19] JUANG C H, CHEN C J, JIANG T, et al. Risk-based liquefaction potential evaluation using standard penetration tests[J]. Canadian Geotechnical Journal, 2000, 37(6):1195-1208.
    [20] 陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3):301-305. CHEN G X, LI F M. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3):301-305. (in Chinese)
    [21] ZHANG Y F, WANG R, ZHANG J M, et al. A constrained neural network model for soil liquefaction assessment with global applicability[J]. Frontiers of Structural and Civil Engineering, 2020, 14(5):1066-1082.
    [22] HALDAR A, TANG W H. Probabilistic evaluation of liquefaction potential[J]. Journal of the Geotechnical Engineering Division, 1979, 105(2):145-163.
    [23] ZHANG J, JUANG C H, MARTIN J R, et al. Inter-region variability of Robertson and Wride method for liquefaction hazard analysis[J]. Engineering Geology, 2016, 203:191-203.
    [24] 胡记磊, 唐小微, 裘江南. 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37(6):1745-1752. HU J L, TANG X W, QIU J N. Prediction of probability of seismic-induced liquefaction based on Bayesian network[J]. Rock and Soil Mechanics, 2016, 37(6):1745-1752. (in Chinese)
    [25] JUANG C H, ZHANG J, KHOSHNEVISAN S, et al. Probabilistic methods for assessing soil liquefaction potential and effect[C]//Geo-Risk 2017. June 4-7, 2017, Denver, Colorado. Reston, VA, USA:American Society of Civil Engineers, 2017:122-145.
    [26] 陈国兴, 吴琪, 孙苏豫, 等. 土壤地震液化评价方法研究进展[J/OL]. 防灾减灾工程学报. https://doi.org/10.13409/j.cnki.jdpme.2021.04.001. CHEN G X, WU Q, SUN S Y, et al. Advances in the development of soil liquefaction triggering procedures during earthquakes:Retrospect and prospect[J/OL]. Journal of Disaster Prevention and Mitigation Engineering. https://doi.org/10.13409/j.cnki.jdpme.2021.04.001.
    [27] HOFFMANN J P. Generalized linear models:An applied approach[M]. Pearson, Boston, 2004.
    [28] ZHANG J, ZHANG L M, HUANG H W. Evaluation of generalized linear models for soil liquefaction probability prediction[J]. Environmental Earth Sciences, 2013, 68(7):1925-1933.
    [29] SHEN M F, CHEN Q S, ZHANG J, et al. Predicting liquefaction probability based on shear wave velocity:An update[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(3):1199-1214.
    [30] 谢君斐. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动, 1984, 4(2):95-126. XIE J F. Some comments on the formula for estimating the liquefaction of sand in revised aseismic design code[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(2):95-126. (in Chinese)
    [31] 廖先斌, 郭晓勇, 杜宇. 英标和国标标贯设备试验结果相关性分析[J]. 岩土力学, 2013, 34(1):143-147. LIAO X B, GUO X Y, DU Y. Correlation analysis of standard penetration test results on British and Chinese standard equipments[J]. Rock and Soil Mechanics, 2013, 34(1):143-147. (in Chinese)
    [32] SEED H B, TOKIMATSU K, HARDER L F, et al. The influence of SPT procedures in soil liquefaction resistance evaluations:Report No. UCB/EERC-84/15[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1984.
    [33] IDRISS I M, BOULANGER R W. SPT-based liquefaction triggering procedures:Report No. UCD/CGM-10[R]. Department of Civil and Environmental Engineering, University of California, Davis, CA, 2010.
    [34] LIAO S S C, WHITMAN R V. Catalogue of liquefaction and non-liquefaction occurrences during earthquakes[R]. Massachusetts Institute of Technology, Cambridge, Mass, 1986.
    [35] SHIBATA T, TEPARAKSA W. Evaluation of liquefaction potentials of soils using cone penetration tests[J]. Soils and Foundations, 1988, 28(2):49-60.
    [36] 李兆焱, 袁晓铭, 曹振中, 等. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 2012, 34(3):483-489. LI Z Y, YUAN X M, CAO Z Z, et al. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3):483-489. (in Chinese)
    [37] 中国地震烈度表:GB/T 17742-2008[S]. 北京:中国标准出版社, 2009. The Chinese seismic intensity scale:GB/T 17742-2008[S]. Beijing:Standards Press of China, 2009. (in Chinese)
    [38] JUANG C H, KHOSHNEVISAN S, ZHANG J. Maximum likelihood principle and its application in soil liquefaction assessment[M]. New York:CRC Press, 2015.
    [39] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464.
    [40] 赵倩玉. 我国规范标贯液化判别方法的改进研究[D]. 哈尔滨:中国地震局工程力学研究所, 2013. ZHAO Q Y. Improvement of liquefaction discrimination method based on surveys of the standard penetration test data in Chinese code[D]. Harbin:Institute of Engineering Mechanics, CEA, 2013. (in Chinese)
    [41] 袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6):1288-1296. YUAN X M, CAO Z Z, SUN R, et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1288-1296. (in Chinese)
    [42] 杨洋. 基于我国规范参数的土层液化可能性评价方法研究[D]. 哈尔滨:中国地震局工程力学研究所, 2019. YANG Y.Research on the evaluation method of soil liquefaction possibility based on Chinese code parameters[D]. Harbin:Institute of Engineering Mechanics, CEA, 2019. (in Chinese)
    [43] 符圣聪, 江静贝. 关于改进中国规范中土液化判别准则的建议[J]. 岩土工程学报, 2011, 33(1):112-116. FU S C, JIANG J B. Suggestions for improving criteria of soil liquefaction in China's code[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):112-116. (in Chinese)
    [44] FU S C, TATSUOKA F. Soil liquefaction during Haicheng and Tangshan earthquake in China:A review[J]. Soils and Foundations, 1984, 24(4):11-29.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖诗豪,程小久,汪华安,张洁.基于标贯试验的砂土液化概率判别法[J].土木与环境工程学报(中英文),2022,44(5):87-97. XIAO Shihao, CHENG Xiaojiu, WANG Huaan, ZHANG Jie. Probabilistic evaluation of sand liquefaction potential based on standard penetration test[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(5):87-97.10.11835/j. issn.2096-6717.2021.048

复制
分享
文章指标
  • 点击次数:391
  • 下载次数: 1260
  • HTML阅读次数: 687
  • 引用次数: 0
历史
  • 收稿日期:2021-01-08
  • 在线发布日期: 2022-06-28
文章二维码