酸溶液对原状黄土抗拉强度的影响试验研究
CSTR:
作者:
中图分类号:

TU431

基金项目:

国家自然科学基金(51608436、51778528);西安理工大学省部共建西北旱区生态水利国家重点实验室自主项目(No.2019KJCXTD-12)


Experimental study on the influence of acid solutions to the tensile strength characteristics of undisturbed loess
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    黄土受到污染后,土体的组分以及内部结构会发生改变,从而使得土体抗拉强度也随之发生改变。通过人工配置盐酸、硫酸和硝酸的4种不同浓度的污染液,对比蒸馏水和污染后的土样进行直接拉伸破坏试验,探讨酸污染黄土的拉应力拉应变特征及过程,进一步分析不同酸溶液种类、浓度对土体抗拉强度演化规律的影响。结果表明:随着酸污染液的侵入,黄土的抗拉强度均小于未污染状态;且随着污染液浓度的增大,盐酸和硝酸污染黄土的抗拉强度均呈减小态势,而硫酸污染英黄土的抗拉强度却逐步恢复,拟合后的污染液浓度与抗拉强度呈现出较好的幂函数关系。基于黄土的抗拉强度和抗剪强度,探讨酸污染黄土的联合抗剪强度拟合关系。

    Abstract:

    After loess is contaminated, the composition and internal structure of the soil will change, so that the tensile strength of the soil will also change. Based on this, in this paper, four kinds of polluted liquids with different molar concentrations of hydrochloric acid, sulfuric acid and nitric acid were manually configured, and the direct tensile failure test was carried out by comparing distilled water and contaminated soil samples, and discussed the tensile stress-tensile strain characteristics and process of acid contaminated loess. The effects of different acid solution types and concentrations on the evolution of soil tensile strength were further analyzed. The results show that the tensile strength of loess is lower than that of the unpolluted state with the invasion of the acid polluted liquid. With the increase of the concentration of the contaminated solution, the tensile strength of the loess polluted by hydrochloric acid and nitric acid were decreased, while that of sulfuric acid gradually recovered.The fitted concentration of the contaminated solution showed a good power function relationship with the tensile strength. Finally, based on the tensile strength and shear strength of the polluted loess, the fitting relationship of the combined shear strength of contaminated loess was discussed.

    参考文献
    [1] 李相然, 姚志祥, 曹振斌. 济南典型地区地基土污染腐蚀性质变异研究[J]. 岩土力学, 2004, 25(8):1229-1233. LI X R, YAO Z X, CAO Z B. Study on physical and mechanical property variation of polluted erosive foundation soils in typical district of Jinan[J]. Rock and Soil Mechanics, 2004, 25(8):1229-1233. (in Chinese)
    [2] GEORGIANNOU V N, BURLAND J B, HIGHT D W. The undrained behaviour of clayey sands in triaxial compression and extension[J]. Géotechnique, 1990, 40(3):431-449.
    [3] ZHOU G Q, HU K, ZHAO X D, et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 113:81-90.
    [4] 吴旭阳, 梁庆国, 牛富俊, 等. 兰州九州重塑黄土的抗拉变形破坏机理[J]. 冰川冻土, 2017, 39(4):842-849. WU X Y, LIANG Q G, NIU F J, et al. Deformation failure mechanism in tensile test on remolded loess from Jiuzhou, Lanzhou[J]. Journal of Glaciology and Geocryology, 2017, 39(4):842-849. (in Chinese)
    [5] 王中妮, 樊恒辉, 贺智强, 等. 分散性土改性剂对土的分散性和抗拉强度的影响[J]. 岩石力学与工程学报, 2015, 34(2):425-432. WANG Z N, FAN H H, HE Z Q, et al. Influence of modifiers on dispersity and tensile strength of dispersive clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):425-432. (in Chinese)
    [6] 袁志辉, 倪万魁, 唐春, 等. 干湿循环下黄土强度衰减与结构强度试验研究[J]. 岩土力学, 2017, 38(7):1894-1902,1942. YUAN Z H, NI W K, TANG C, et al. Experimental study of structure strength and strength attenuation of loess under wetting-drying cycle[J]. Rock and Soil Mechanics, 2017, 38(7):1894-1902,1942. (in Chinese)
    [7] 袁志辉, 倪万魁, 唐春, 等. 干湿循环效应下黄土抗拉强度试验研究[J]. 岩石力学与工程学报, 2017, 36(Sup1):3670-3677. YUAN Z H, NI W K, TANG C, et al. Experimental studies of tensile strength of loess in drying-wetting cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup1):3670-3677. (in Chinese)
    [8] 陈日高, 马福荣, 庞迎波. 重金属污染土强度特性试验研究[J]. 土木建筑与环境工程, 2014, 36(6):94-98. CHEN R G, MA F R, PANG Y B. Experimental analysis of the strength properties of the heavy metal contaminanted soil[J]. Journal of Civil,Architectural & Environmental Engineering, 2014, 36(6):94-98. (in Chinese)
    [9] 朱春鹏, 刘汉龙, 沈扬. 酸碱污染土强度特性的室内试验研究[J]. 岩土工程学报, 2011, 33(7):1146-1152. ZHU C P, LIU H L, SHEN Y. Laboratory tests on shear strength properties of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7):1146-1152. (in Chinese)
    [10] 夏磊, 顾欢达. 酸雨对河道淤泥气泡混合土工程性质的影响[J]. 土木建筑与环境工程, 2018, 40(6):76-84. XIA L, GU H D. Influence of acid rain on engineering properties of foamed light soil with river sludge[J]. Journal of Civil,Architectural & Environmental Engineering, 2018, 40(6):76-84. (in Chinese)
    [11] PLÉ O, LÊ T N H. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay[J].Geotextiles and Geomembranes, 2012, 32:111-116.
    [12] VISWANADHAM B V S, JHA B K, PAWAR S N. Influence of geofibers on the flexural behavior of compacted soil beams[J]. Geosynthetics International, 2010, 17(2):86-99.
    [13] TAMRAKAR S B, MITACHI T, TOYOSAWA Y, et al. Development of a new soil tensile strength test apparatus[J]. Geotechnical Special Publication, 2005, 164:1-10.
    [14] 党进谦, 张伯平, 熊永. 单轴土工拉伸仪的研制[J]. 水利水电科技进展, 2001, 21(5):31-32,70. DANG J Q, ZHANG B P, XIONG Y. Development of earthwork elongation apparatus[J]. Advances in Science and Technology of Water Resources, 2001, 21(5):31-32,70. (in Chinese)
    [15] TAMRAKAR S B, MITACHI T, TOYOSAWA Y. Measurement of soil tensile strength and factors affecting its measurements[J]. Soils and Foundations, 2007, 47(5):911-918.
    [16] DAVID SUITS L, SHEAHAN T C, NAHLAWI H, et al. A direct tensile strength testing method for unsaturated geomaterials[J]. Geotechnical Testing Journal, 2004, 27(4):11767.
    [17] 施家佩. 造纸工业废水[M]. 北京:化学工业出版社, 1988. SHI J P. Wastewater from paper industry[M]. Beijing:Chemical Industry Press, 1988. (in Chinese)
    [18] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. Standard for geotechnical testing method:GB/T 50123-2019[S]. Beijing:China Planning Press, 2019. (in Chinese)
    [19] 崔猛, 韩尚宇, 洪宝宁. 新型土工单轴拉伸试验装置的研制及应用[J]. 岩土力学, 2017, 38(6):1832-1840. CUI M, HAN S Y, HONG B N. Development and application of a new geotechnical device for direct tension test[J]. Rock and Soil Mechanics, 2017, 38(6):1832-1840. (in Chinese)
    [20] 刘祖典. 黄土力学与工程[M]. 西安:陕西科学技术出版社, 1997. LIU Z D. Loess mechanics and engineering[M]. Xi'an:Shaanxi Science and Technology Press, 1997. (in Chinese)
    [21] 王绪民, 陈善雄, 程昌炳. 酸性溶液浸泡下原状黄土物理力学特性试验研究[J]. 岩土工程学报, 2013, 35(9):1619-1626. WANG X M, CHEN S X, CHENG C B. Experimental study on physico-mechanical characteristics of undisturbed loess soaked in acid solution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9):1619-1626. (in Chinese)
    [22] 刘华, 何江涛, 赵茜, 等. 酸污染原状黄土渗透微观特征演变规律试验研究[J]. 岩土力学, 2020, 41(3):765-772. LIU H, HE J T, ZHAO Q, et al. Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess[J]. Rock and Soil Mechanics, 2020, 41(3):765-772. (in Chinese)
    [23] 孙萍, 彭建兵, 殷跃平, 等. 黄土拉伸试验及其破裂过程仿真分析[J]. 岩土力学, 2010, 31(2):633-637. SUN P, PENG J B, YIN Y P, et al. Tensile test and simulation analysis of fracture process of loess[J]. Rock and Soil Mechanics, 2010, 31(2):633-637. (in Chinese)
    [24] LI R J, LIU J D, YAN R, et al. Characteristics of structural loess strength and preliminary framework for joint strength formula[J]. Water Science and Engineering, 2014, 7(3):319-330.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘华,胡鹏飞,王松鹤,刘乃飞,胡文乐,谷宏全.酸溶液对原状黄土抗拉强度的影响试验研究[J].土木与环境工程学报(中英文),2022,44(5):109-117. LIU Hua, HU Pengfei, WANG Songhe, LIU Naifei, HU Wenle, GU Hongquan. Experimental study on the influence of acid solutions to the tensile strength characteristics of undisturbed loess[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(5):109-117.10.11835/j. issn.2096-6717.2021.009

复制
分享
文章指标
  • 点击次数:385
  • 下载次数: 823
  • HTML阅读次数: 421
  • 引用次数: 0
历史
  • 收稿日期:2020-09-21
  • 在线发布日期: 2022-06-28
文章二维码