大型钢网架穹顶结构弹塑性稳定性分析
CSTR:
作者:
中图分类号:

TU311.4

基金项目:

国家自然科学基金(51678091)


Elasto-plastic stability analysis of large steel grid dome structure
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对大型LNG储罐钢网架穹顶结构的弹塑性稳定性分析,基于刚体准则与改进塑性铰模型建立适于几何与材料双非线性分析的空间弹塑性梁单元,研究局部荷载扰动与整体模态扰动两种不同的初始缺陷处理方法以及材料非线性对结构稳定承载力影响的差异。结果表明:初始缺陷、材料非线性与约束刚度减小均会降低网架穹顶结构稳定承载力;荷载干扰下,结构稳定承载力对干扰大小敏感而对位置不敏感;模态干扰属于整体几何缺陷,结构整体初始变形较大,荷载位移曲线平滑。与ABAQUS相比,所建的弹塑性刚体准则空间梁单元及其相应的非线性分析方法效率与精度兼优,适用于大型复杂工程结构非线性分析,在处理局部缺陷对结构稳定性的影响上具有优势。

    Abstract:

    Based on the rigid body rule, an improved plastic hinge model is adopted to produce a spatial elasto-plastic beam element for the stability analysis of the steel dome structure of LNG storage tank by the consideration of the nonlinearity of geometry and materials.Two different methods of considering initial imperfections between local load disturbance and global modal disturbance and whether to consider the influence of material nonlinearity on the stability of the structure are studied. The results show that the initial defects, material nonlinearity and reduction of restraint stiffness will all reduce the stable bearing capacity of the grid dome structure. The stable bearing capacity of the structure under load interference is sensitive to the magnitude of the interference but not to the position; the modal interference is an overall geometric defect, the overall initial deformation of the structure is large, and the load-displacement curve is smooth.Compared with ABAQUS, the elasto-plastic rigid body criterion spatial beam element and its corresponding nonlinear analysis method are more efficient and accurate. It is suitable for nonlinear analysis of large and complex engineering structures, and has advantages in dealing with the effects of local defects on the structural stability.

    参考文献
    [1] 王恒. 大型LNG储罐混凝土外罐及穹顶施工期间全过程受力分析[D]. 哈尔滨:哈尔滨工业大学, 2014. WANG H. Complete process analysis of concrete outer tank and dome during the construction period of LNG tank[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese)
    [2] 李斌, 王文焘, 李明. 大型储罐钢穹顶稳定性分析研究[J]. 石油化工安全环保技术, 2019, 35(4):31-32,70. LI B, WANG W T, LI M. Stability analysis of large storage tank steel dome[J]. Petrochemical Safety and Environmental Protection Technology, 2019, 35(4):31-32,70. (in Chinese)
    [3] BATHE K J, BOLOURCHI S. Large displacement analysis of three-dimensional beam structures[J]. International Journal for Numerical Methods in Engineering, 1979, 14(7):961-986.
    [4] YANG Y B, CHIOU H T. Rigid body motion test for nonlinear analysis with beam elements[J]. Journal of Engineering Mechanics, 1987, 113(9):1404-1419.
    [5] YANG Y B, KUO S R. Theory & analysis of nonlinear framed structures[M]. Singapore:Prentice Hall, 1994.
    [6] YANG Y B, LIN S P, CHEN C S. Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(7):1178-1192.
    [7] YANG Y B, CHANG J T, YAU J D. A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 178(3/4):307-321.
    [8] YANG Y B, LEU L J. Force recovery procedures in nonlinear analysis[J]. Computers & Structures, 1991, 41(6):1255-1261.
    [9] 陈朝晖, 杨帅, 杨永斌. 弹性膜结构几何非线性分析的刚体准则法[J]. 工程力学, 2020, 37(6):246-256. CHEN Z H, YANG S, YANG Y B. The rigid body rule for the nonlinear analysis of membrane structures[J]. Engineering Mechanics, 2020, 37(6):246-256. (in Chinese)
    [10] YANG Y B, CHEN Z H, TAO Y C, et al. Elasto-plastic analysis of steel framed structures based on rigid body rule and plastic-hinge concept[J]. International Journal of Structural Stability and Dynamics, 2019, 19(9):1950104.
    [11] 陈朝晖, 陶宇宸, 杨永斌. 基于刚体准则的空间框架弹塑性非线性分析方法[J].建筑结构学报, 2020, 41(10):139-149. CHEN Z H, TAO Y C, YANG Y B. Elastoplastic nonlinear analysis method for spatial frame based on rigid body rule[J]. Journal of Building Structures, 2020, 41(10):139-149. (in Chinese)
    [12] LIEW J Y R, WHITE D W, CHEN W F. Second-order refined plastic-hinge analysis for frame design. part I[J]. Journal of Structural Engineering, 1993, 119(11):3196-3216.
    [13] DUAN L, CHEN W F. Design interaction equation for steel beam-columns[J]. Journal of Structural Engineering, 1989, 115(5):1225-1243.
    [14] 李云飞, 陈朝晖, 杨永斌, 等. 基于刚体准则和广义位移控制法的拱结构屈曲与后屈曲分析[J]. 土木工程学报, 2017, 50(12):37-45. LI Y F, CHEN Z H, YANG Y B, et al. Buckling & post-buckling analysis of arches based on rigid body rule and GDC method[J]. China Civil Engineering Journal, 2017, 50(12):37-45. (in Chinese)
    [15] BATOZ J L, DHATT G. Incremental displacement algorithms for nonlinear problems[J]. International Journal for Numerical Methods in Engineering, 1979, 14(8):1262-1267.
    [16] YANG Y B, SHIEH M S. Solution method for nonlinear problems with multiple critical points[J]. AIAA Journal,1990, 28(12):2110-2116.
    [17] 李忠学. 初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J]. 土木工程学报, 2002, 35(1):11-14, 24. LI Z X. Effects of initial geometrical imperfections on dynamic stability of reticulated shell structures[J]. China Civil Engineering Journal, 2002, 35(1):11-14, 24. (in Chinese)
    [18] TORKAMANI M A M, SONMEZ M. Inelastic large deflection modeling of beam-columns[J]. Journal of Structural Engineering, 2001, 127(8):876-887.
    [19] MORRIS N F. Effect of imperfections on lattice shells[J]. Journal of Structural Engineering, 1991, 117(6):1796-1814.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张洋,陈朝晖,杨帅.大型钢网架穹顶结构弹塑性稳定性分析[J].土木与环境工程学报(中英文),2022,44(5):189-196. ZHANG Yang, CHEN Zhaohui, YANG Shuai. Elasto-plastic stability analysis of large steel grid dome structure[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(5):189-196.10.11835/j. issn.2096-6717.2021.007

复制
分享
文章指标
  • 点击次数:411
  • 下载次数: 814
  • HTML阅读次数: 638
  • 引用次数: 0
历史
  • 收稿日期:2020-09-06
  • 在线发布日期: 2022-06-28
文章二维码