富水砂卵石地层地铁联络横通道人工冻结数值分析
CSTR:
作者:
作者单位:

1.西南交通大学 交通隧道工程教育部重点实验室,成都 610031;2.中铁建大桥工程局集团第二工程有限公司,广东 深圳 518083;3.成都轨道建设管理有限公司,成都 610041

作者简介:

文彦鑫(1997- ),男,主要从事隧道与地下工程结构设计与优化研究,E-mail:1017185421@ qq.com。
brief:WEN Yanxin (1997- ), main research interests: design and optimization of tunnel and underground engineering structure, E-mail: 1017185421@ qq.com.

通讯作者:

晏启祥(通信作者),男,博士,教授,博士生导师,E-mail:764365015@ qq.com。

中图分类号:

U455.49

基金项目:

国家自然科学基金(51678500、51878573)。


Numerical simulation of artificial ground freezing for cross passage of subway in water-rich sandy cobble stratum
Author:
Affiliation:

1.Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China;2.The 2nd Engineering Co., Ltd. of China Railway Construction Bridge Engineering Bureau Group, Shenzhen 518083, Guangdong, P. R. China;3.Chengdu Railway Construction Management Co., Ltd., Chengdu 610041, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51678500, 51878573)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    人工地层冻结法作为一种常用的土层加固方法,被广泛应用于煤矿、地铁等地下结构工程中。成都地区的砂卵石地层含水量丰富,渗透系数大,实施冻结法难度更大。以成都地铁10号线某隧道区间为工程依托,研究采用人工冻结法在砂卵石地层中修建联络横通道的问题。对冻结工程进行现场监测,根据冻结管实际布置形式建立考虑冰水相变的非线性三维弹塑性热—力耦合数值模型,通过现场监测和数值模拟两种手段对积极冻结期温度场和位移场的发展及分布规律进行研究。结果表明:数值模拟结果与现场监测数据吻合较好,建立的数值模型比较可靠;冻结壁交圈时间是冻胀变形快速增长的临界时间点,交圈时间约为25 d;冻结43.7 d时冻结壁厚度达到2 m,在37.8 d时冻结壁内平均温度达到-10 ℃,满足后续开挖施工要求。

    Abstract:

    As a common soil reinforcement method, artificial ground freezing method is widely used in underground structure engineering such as coal mine and subway. The sandy cobble stratum in Chengdu has rich water content and high permeability coefficient, where is difficult for freezing method. In this paper, the construction of cross passage by artificial freezing method in sandy cobble stratum was examined based on a tunnel section of Chengdu Metro Line 10. Firstly, the field monitoring of freezing engineering is carried out. Secondly, a nonlinear three-dimensional elastic-plastic thermal-stress coupled numerical model considering ice water phase transformation was established according to the actual layout of freezing pipes. The development and distribution of temperature field and displacement field in active freezing period were studied by field monitoring and numerical simulation. The research result shows that the numerical simulation results were in good agreement with the field monitoring data, and the established numerical model was reliable; the time of closure of freezing wall is critical for rapid growth of frost heave deformation, and the time is about 25 days; the thickness of frozen wall reached 2 m for freezing of 43.7 days, and the average temperature in the frozen wall reaches -10 ℃ in 37.8 days, which meets the requirements of subsequent excavation construction.

    参考文献
    [1] PIMENTEL E, PAPAKONSTANTINOU S, ANAGNOSTOU G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling [J]. Tunnelling and Underground Space Technology, 2012, 28: 57-69.
    [2] 蔡海兵, 程桦, 姚直书, 等. 基于冻土正交各向异性冻胀变形的隧道冻结期地层位移数值分析[J]. 岩石力学与工程学报, 2015, 34(8):1667-1676.
    [3] YAN Q X, XU Y J, YANG W B, et al. Nonlinear transient analysis of temperature fields in an AGF project used for a cross-passage tunnel in the Suzhou metro [J]. KSCE Journal of Civil Engineering, 2018, 22(4): 1473-1483.
    [4] YAN Q X, LI B J, ZHANG Y Y, et al. Numerical investigation of heat-insulating layers in a cold region tunnel, taking into account airflow and heat transfer [J]. Applied Sciences, 2017, 7(7): 679-700.
    [5] 晏启祥, 房旭. 地铁联络横通道水平冻结施工的热固耦合分析[J]. 中国铁道科学, 2012, 33(1): 54-59.
    [6] CAI H B, LI S, LIANG Y, et al. Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique [J]. Computers and Geotechnics, 2019, 115: 103155.
    [7] SONG H Q, CAI H B, YAO Z S, et al. Finite element analysis on 3D freezing temperature field in metro cross passage construction [J]. Procedia Engineering, 2016, 165: 528-539.
    [8] 孙立强, 任宇晓, 闫澍旺, 等. 人工冻土冻结过程中热—力耦合的数值模拟方法研究[J]. 岩土工程学报, 2015, 37(Sup2): 137-142.
    [9] 耿萍, 晏启祥, 何川, 等. 隧道水平冻结施工过程的数值模拟[J]. 工程力学, 2010, 27(5): 122-127.
    [10] 任辉, 胡向东, 洪泽群, 等. 超浅埋暗挖隧道管幕冻结法积极冻结方案试验研究[J]. 岩土工程学报, 2019, 41(2): 320-328.
    [11] YAN Q X, WU W, ZHANG C, et al. Monitoring and evaluation of artificial ground freezing in metro tunnel construction-A case study [J]. KSCE Journal of Civil Engineering, 2019, 23(5): 2359-2370.
    [12] 杨平, 陈瑾, 张尚贵, 等. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234.
    [13] YANG P, KE J M, WANG J G, et al. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation [J]. Computers and Geotechnics, 2006, 33(6/7): 330-340.
    [14] 张志强, 何川. 用冻结法修建地铁联络通道施工力学研究[J]. 岩石力学与工程学报, 2005, 24(18): 3211-3217.
    [15] KIM K, ZHOU W, HUANG S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost [J]. Cold Regions Science and Technology, 2008, 53(3): 382-396.
    [16] KUDRYAVTSEV S A. Numerical modeling of the freezing, frost heaving, and thawing of soils [J]. Soil Mechanics and Foundation Engineering, 2004, 41(5): 177-184.
    [17] ZHELNIN M, KOSTINA A, PLEKHOV O, et al. Numerical simulation of soil stability during artificial freezing [J]. Procedia Structural Integrity, 2019, 17: 316-323.
    [18] YANG W B, KONG L, CHEN Y P. Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers [J]. Applied Thermal Engineering, 2015, 75: 259-269.
    [19] SDEL GIUDICE, COMINI G, LEWIS R W. Finite element simulation of freezing processes in soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(3): 223-235.
    [20] 彭浪. 滨海地层冻结围护地铁联络通道冻胀性态研究[D]. 福州: 福建工程学院, 2017.
    [21] 张晋勋, 杨昊, 单仁亮, 等. 冻结饱水砂卵石三轴压缩强度试验研究[J]. 岩土力学, 2018, 39(11): 3993-4000, 4016.
    相似文献
    引证文献
引用本文

文彦鑫,伍旺,郭治岳,宋修元,尹红,蒋辉,晏启祥.富水砂卵石地层地铁联络横通道人工冻结数值分析[J].土木与环境工程学报(中英文),2022,44(6):63-74. WEN Yanxin, WU Wang, GUO Zhiyue, SONG Xiuyuan, YIN Hong, JIANG Hui, YAN Qixiang. Numerical simulation of artificial ground freezing for cross passage of subway in water-rich sandy cobble stratum[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(6):63-74.10.11835/j. issn.2096-6717.2021.054

复制
分享
文章指标
  • 点击次数:557
  • 下载次数: 926
  • HTML阅读次数: 190
  • 引用次数: 0
历史
  • 收稿日期:2020-12-04
  • 在线发布日期: 2022-11-09
文章二维码