考虑区分车辆运行状态的桥梁车载统计分析及模拟
CSTR:
作者:
作者单位:

1.大连理工大学 土木工程学院,辽宁 大连 116024;2.华南理工大学 亚热带建筑科学国家重点实验室,广州 510641

作者简介:

杨东辉(1985- ),男,博士,副教授,主要从事桥梁结构健康监测和性能评估研究,E-mail:dhyang@dlut.edu.cn。
brief:YANG Donghui (1985- ), PhD, associate professor, main research interests: bridge structural health monitoring and performance evaluation, E-mail: dhyang@dlut.edu.cn

通讯作者:

伊廷华(通信作者),男,教授,博士生导师,E-mail:yth@dlut.edu.cn。

中图分类号:

U447

基金项目:

国家自然科学基金(52078102、52050050、51978128);亚热带建筑科学国家重点实验室开放课题(2020ZB)


Statistical analysis and simulation of vehicle load considering traffic states division
Author:
Affiliation:

1.School of Civil Engineering, Dalian University of Technology, Dalian 116023, Liaoning, P. R. China;2.State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510006, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 52078102, 52050050, 51978128); Open Projects of State Key Laboratory of Subtropical Architectural Science (No. 2020ZB)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    动态称重系统作为桥梁结构健康系统的重要组成部分之一,能提供丰富的车辆荷载监测数据,在此基础上建立能反映实际交通状况的车辆荷载模型,对桥梁结构的安全评估、车致疲劳分析等具有重要意义。提出一种能考虑区分车辆运行状态的随机车流模拟方法和流程,在车辆荷载统计分析过程中通过各时段的车流量密集程度区分车辆运行状态,针对不同运行状态,引入单峰和多峰概率分布模型,对车重、车速、车间距等车辆荷载统计参数进行概率拟合,通过K-S检验获得车辆荷载参数的最优概率分布;通过Monte Carlo抽样模拟随机车流,进而分解为随机加载流;基于某实际桥梁的车辆荷载监测数据,对车辆荷载模拟方法的合理性进行验证。结果表明:采用区分车辆运行状态模拟的随机车流对桥梁结构进行加载,获得的钢箱梁跨中底板应力幅值和应力循环次数与实际车流加载结果接近。相比之下,如果不考虑区分车辆运行状态,得到的应力幅值和循环次数都明显小于实际车流的加载结果,这对于桥梁结构的车致疲劳分析偏于危险。

    Abstract:

    The weigh-in-motion system is one of the important part of the bridge structure health system, which can provide abundant vehicle load monitoring data. On this basis, establishment of vehicle load model that can reflect the actual traffic conditions is of great significance for safety assessment and vehicle-induced fatigue analysis of bridge structures. This paper proposes a random traffic flow simulation method and process that considering different traffic states. In the process of vehicle load statistical analysis, the traffic states are divided by the vehicle flow intensity in each period. For different traffic states, the common single-peak probability distribution models and the multi-peak one are introduced to carry out probability fitting for vehicle weight, vehicle speed and vehicle spacing, and the optimal probability distribution of vehicle load parameters can be obtained by K-S test. The Monte-Carlo method is used to simulate random traffic flow, and then decomposed into random loading flow. Finally, the rationality of the vehicle load simulation method is verified based on the vehicle load monitoring data of an actual bridge. The results show that when the different traffic states are considered for random traffic flow simulation, the stress amplitudes and stress cycle times of the steel box girder lower flange at mid-span are close to the results induced by the actual traffic flow. By contrast, when the different traffic states are not distinguished for traffic flow simulation, the stress amplitude and the number of cycles obtained are significantly smaller than the actual, which would lead to risky results for the vehicle-induced fatigue analysis of the bridge structure.

    参考文献
    [1] O’CONNOR A, O’BRIEN E J. Traffic load modelling and factors influencing the accuracy of predicted extremes [J]. Canadian Journal of Civil Engineering, 2005, 32(1): 270-278.
    [2] KIM J, SONG J. A comprehensive probabilistic model of traffic loads based on weigh-in-motion data for applications to bridge structures [J]. KSCE Journal of Civil Engineering, 2019, 23(8): 3628-3643.
    [3] 孙守旺, 孙利民. 基于实测的公路桥梁车辆荷载统计模型[J]. 同济大学学报(自然科学版), 2012, 40(2): 198-204.
    [4] 刘扬, 张海萍, 鲁乃唯, 等. 基于WIM的随机车流建模和简支梁桥荷载效应研究[J]. 桥梁建设, 2015, 45(5): 13-18.
    [5] CHEN B, YE Z N, CHEN Z S, et al. Bridge vehicle load model on different grades of roads in China based on Weigh-in-Motion (WIM) data [J]. Measurement, 2018, 122: 670-678.
    [6] WANG F Y, XU Y L. Traffic load simulation for long-span suspension bridges [J]. Journal of Bridge Engineering, 2019, 24(5): 05019005.
    [7] 宗周红, 薛程, 杨泽刚, 等. 基于WIM的江苏省高速公路桥梁汽车荷载模型[J]. 东南大学学报(自然科学版), 2020, 50(1): 143-152.
    [8] 劳家荣, 谭皓, 鲁乃唯. 基于车辆WIM监测数据的大跨桥梁作用效应极值分析[J]. 中外公路, 2020, 40(3): 114-118.
    [9] 黄侨, 朱志远, 任远, 等. 基于车辆荷载模型的斜拉索索力随机模拟及疲劳分析[J]. 长安大学学报(自然科学版), 2021, 41(2): 12-22.
    [10] 袁伟璋, 黄海云, 张俊平, 等. 基于实际运营车辆荷载效应的既有桥梁可靠度研究[J]. 振动与冲击, 2019, 38(6): 239-244.
    [11] 宗周红, 李峰峰, 夏叶飞, 等. 基于WIM的新沂河大桥车辆荷载模型研究[J]. 桥梁建设, 2013, 43(5): 29-36.
    [12] 王强, 苏成. 公路桥梁车辆行驶间距研究[J]. 华南理工大学学报(自然科学版), 2016, 44(3): 96-102.
    [13] 鲁乃唯. 随机车流下悬索桥加劲梁动力响应概率模型与可靠度研究[D]. 长沙: 长沙理工大学, 2014.
    [14] 韩万水, 陈艾荣. 随机车流下的风—汽车—桥梁系统空间耦合振动研究[J]. 土木工程学报, 2008, 41(9): 97-102.
    [15] 关伟, 何蜀燕. 基于统计特性的城市快速路交通流状态划分[J]. 交通运输系统工程与信息, 2007, 7(5): 42-50.
    [16] 李明, 刘扬, 杨兴胜. 考虑轴重相关的随机车流荷载效应[J]. 浙江大学学报(工学版), 2019, 53(1): 78-88.
    [17] 陈兴旺. 广义极值分布理论在重现期计算的应用[J]. 气象与减灾研究, 2008, 31(4): 52-54.
    [18] 刘扬, 张海萍, 邓扬, 等. 公路桥梁车辆荷载建模方法及疲劳寿命评估[J]. 应用力学学报, 2016, 33(4): 652-658, 740.
    [19] 阎莹, 王晓飞, 张宇辉, 等. 高速公路断面运行车速分布特征研究[J]. 中国安全科学学报, 2008, 18(7): 171-176.
    [20] 陈达章, 石雪飞. 扩建桥梁车辆荷载特性及多车道荷载模型研究[J]. 公路, 2021, 66(6): 176-183.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨东辉,管泽鑫,伊廷华,李宏男.考虑区分车辆运行状态的桥梁车载统计分析及模拟[J].土木与环境工程学报(中英文),2022,44(6):85-93. YANG Donghui, GUAN Zexin, YI Tinghua, LI Hongnan. Statistical analysis and simulation of vehicle load considering traffic states division[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2022,44(6):85-93.10.11835/j. issn.2096-6717.2021.260

复制
分享
文章指标
  • 点击次数:501
  • 下载次数: 939
  • HTML阅读次数: 87
  • 引用次数: 0
历史
  • 收稿日期:2021-09-28
  • 在线发布日期: 2022-11-09
文章二维码