Abstract:In order to improve the removal efficiency of 17β-estradiol (E2) in wastewater, the predominant microorganisms that degrade E2 in the Erhai Lake sediment were screened, and the biosorption and biodegradation of E2 in different environment were studied in this study. The results showed that Escherichia coli (E. coli) is the dominant strain of E2 degradation, and its biological removal process of E2 is a combined process of rapid adsorption and continuous degradation. The removal rate of E2 with an initial concentration of 1.00 mg/L was about 70.42% after being degraded by E. coli for 3 days. Biosorption is mainly limited by pH value and biomass, and the highest adsorption efficiency was obtained in a weakly alkaline environment (pH=8). Electron donors, hydrogen peroxide, humus and heavy metals can effectively promote the biodegradation of E2 at appropriate concentrations. When the concentrations of glucose, sodium formate, H2O2, humus, Zn2+ and Cu2+ was 40 mg/L, 10 mg/L, 3 mmol/L, 2-15 mg/L, 0.5 mg/L and 0.5 mg/L, respectively, the biodegradation efficiency of E2 increased by 12.41%-57.47%. Draw a conclusion from the above results, the E. coli screened from the Erhai Lake sediment exhibits excellent E2 removal ability, but this process is affected by many environmental factors, and the removal efficiency of E2 can be greatly promoted by adjusting appropriate environmental conditions.