电石渣—脱硫石膏复合激发充填材料性能及微观结构
CSTR:
作者:
作者单位:

1.长沙理工大学 交通运输工程学院,长沙 410114;2.中建西部建设湖南有限公司,长沙 410000

作者简介:

高英力(1977- ),男,博士,教授,主要从事固体工业废弃物综合利用、先进土木工程材料研究,E-mail:yingligao509@126.com。
GAO Yingli (1977- ), PhD, professor, main research interests: solid wastes integrated utilization and advanced civil engineering materials, E-mail: yingligao509@126.com.

中图分类号:

TU521.4

基金项目:

国家自然科学基金(U1833127、51978080);湖南省研究生科研创新项目(CX20200828);长沙理工大学校级研究生实践创新项目(SJCX202002)


Properties and microstructure of backfilling material activated by carbide slag and desulfurized gypsum
Author:
Affiliation:

1.School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China;2.China West Construction Hunan Group Co., Ltd., Changsha 410000, P. R. China

Fund Project:

National Natural Science Foundation of China (No. U1833127, 51978080); Hunan Provincial Innovation Foundation for Postgraduate (No. CX20200828); Practical Innovation Foundation for Postgraduate of Changsha University of Science and Technology (No. SJCX202002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对传统充填材料高碳排放、高成本问题,以“绿色矿山”为理念,选用工业固废电石渣、脱硫石膏和矿渣为胶凝组分,以尾矿砂为骨料制备充填材料。利用X射线(XRD)、扫描电镜(SEM)和能谱分析(EDS)等手段研究充填料水化产物及微观形貌,并开展工作性能、力学性能和重金属固化性能试验。结果表明:所开发的充填材料凝结时间和流动度均满足矿山充填工程要求,充填体7、28 d抗压强度可达4.6、7.9 MPa,充填体浸出液中Pb、Zn浓度低于规定限值。电石渣内的氢氧化钙提供碱性环境,脱硫石膏提供硫酸根离子,两者对矿渣内的硅铝质原料复合激发,生成以钙矾石和C-A-S-H凝胶为主的水化产物。大量针棒状结构的钙矾石晶体及网状结构的C-A-S-H凝胶相互穿插,并且与尾砂颗粒紧密结合,随着龄期延长,结构更加致密,使充填体具有良好的力学性能。

    Abstract:

    To deal with the high carbon emission and high cost of traditional backfilling materials, taking "green mine" as the concept, industrial solid wastes such as carbide slag, desulfurized gypsum and slag were used as cementitious components, and tailings were used as aggregates for backfilling materials. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to examine the hydration products and microstructure of the backfilling materials, and the working performance, mechanical properties and heavy metal solidification performance tests were carried out. The results show that the setting time and fluidity of the developed backfilling materials met the requirements of mine backfilling project. The maximum compressive strength of the backfilling body can reach up to 4.6 MPa and 7.9 MPa at 7 d and 28 d, respectively, and the concentrations of Pb and Zn in the leaching solution of the backfilling body were lower than the specified limits. Calcium hydroxide in carbide slag provided alkaline environment, and desulfurization gypsum provided sulfate ion. The aluminosilicate material in slag is activated by both, producing the hydration products that mainly consist of ettringites and C-A-S-H gels. A large number of needle like ettringite crystals and reticulated C-A-S-H gels interspersed with each other, and tightly bonded with tailings particles. With extension of age, the structure became more compact, and the backfilling would be of good mechanical properties.

    参考文献
    [1] 易龙生, 米宏成, 吴倩, 等. 中国尾矿资源综合利用现状[J]. 矿产保护与利用, 2020, 40(3): 79-84.
    [2] 刘文博, 姚华彦, 王静峰, 等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(Sup1): 268-270.
    [3] ERCIKDI B, CIHANGIR F, KESIMAL A, et al. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings [J]. Journal of Hazardous Materials, 2009, 168(2/3): 848-856.
    [4] 周爱民, 古德生. 基于工业生态学的矿山充填模式[J]. 中南大学学报(自然科学版), 2004, 35(3): 468-472.
    [5] 饶运章. 降低胶结充填成本的途径及应用[J]. 中国矿业, 1997, 6(5): 34-38.
    [6] YANG K H, SONG J K, SONG K I. Assessment of CO2 reduction of alkali-activated concrete [J]. Journal of Cleaner Production, 2013, 39: 265-272.
    [7] 邓晓轩, 纪宪坤, 田均兵, 等. 矿渣在尾砂胶结充填中的应用与研究进展[J]. 材料导报, 2016, 30(5): 95-100.
    [8] BEHERA S K, GHOSH C N, MISHRA K, et al. Utilisation of lead-zinc mill tailings and slag as paste backfill materials [J]. Environmental Earth Sciences, 2020, 79(16): 1-18.
    [9] WANG F L, CHEN G L, JI L, et al. Preparation and mechanical properties of cemented uranium tailing backfill based on alkali-activated slag [J]. Advances in Materials Science and Engineering, 2020, 2020: 1-7.
    [10] 杨云鹏, 高谦. 尾砂新型复合胶结材料实验研究[J]. 岩石力学与工程学报, 2012, 31(Sup1): 2906-2911.
    [11] 彭饶. 硫酸钠激发胶凝材料制备尾矿充填体的设计与性能研究[D]. 武汉: 武汉理工大学, 2019.
    [12] 张少鹏, 杜翠凤, 戚伟. 碱激发矿渣胶结剂对尾砂充填料浆流动性和抗压强度的影响[J]. 矿业研究与开发, 2020, 40(3): 87-92.
    [13] 张发文, 杨建涛, 刘文霞, 等. 矿渣胶凝材料固结尾砂的微观实验[J]. 北京科技大学学报, 2012, 34(7): 738-743.
    [14] LUUKKONEN T, ABDOLLAHNEJAD Z, YLINIEMI J, et al. One-part alkali-activated materials: A review [J]. Cement and Concrete Research, 2018, 103: 21-34.
    [15] LV W, SUN Z Q, SU Z J. Study of seawater mixed one-part alkali activated GGBFS-fly ash [J]. Cement and Concrete Composites, 2020, 106: 103484.
    [16] LEE N K, JANG J G, LEE H K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages [J]. Cement and Concrete Composites, 2014, 53: 239-248.
    [17] 彭家惠, 楼宗汉. 钙矾石形成机理的研究[J]. 硅酸盐学报, 2000, 28(6): 511-515.
    [18] 孙幸福. 碱激发钢渣-矿渣基灌浆材料的制备与性能研究[D]. 重庆: 重庆大学, 2017.
    [19] 张文生, 张金山, 叶家元, 等. 合成条件对钙矾石形貌的影响[J]. 硅酸盐学报, 2017, 45(5): 631-638.
    [20] ZHANG J J, LI G X, YANG X F, et al. Study on a high strength ternary blend containing calcium sulfoaluminate cement/calcium aluminate cement/ordinary Portland cement [J]. Construction and Building Materials, 2018, 191: 544-553.
    [21] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review [J]. Waste Management, 2009, 29(1): 390-403.
    [22] TAILBY J, MACKENZIE K J D. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals [J]. Cement and Concrete Research, 2010, 40(5): 787-794.
    [23] 丁崧, 陈潇, 夏飞跃, 等. 净水型赤泥-矿渣基地聚合物透水混凝土的研究[J]. 建筑材料学报, 2020, 23(1): 48-55.
    引证文献
引用本文

高英力,孟浩,冷政,卜涛,龙国鑫,段开瑞.电石渣—脱硫石膏复合激发充填材料性能及微观结构[J].土木与环境工程学报(中英文),2023,45(3):99-106. GAO Yingli, MENG Hao, LENG Zheng, BU Tao, LONG Guoxin, DUAN Kairui. Properties and microstructure of backfilling material activated by carbide slag and desulfurized gypsum[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(3):99-106.10.11835/j. issn.2096-6717.2021.136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-13
  • 在线发布日期: 2023-04-29
文章二维码