胶凝砂砾石材料参数概率统计和相关距离分析
CSTR:
作者:
作者单位:

1.广东省建设工程质量安全检测总站有限公司,广州 510600;2.长江勘测规划设计研究有限责任公司, 武汉 430010;3.中山大学,土木工程学院,(珠海),广东 珠海 519082;4.中山大学,南方海洋科学与工程广东省实验室,(珠海),广东 珠海 519082;5.武汉大学 水资源与水电工程科学国家重点实验室,武汉 430072

作者简介:

徐通(1984-),男,高级工程师,主要从事岩土工程检测及风险评估研究,E-mail: tong4012002@foxmail.com。
XU Tong (1984- ), senior engineer, main research interests: geotechnical engineering testing and risk assessment, E-mail: tong4012002@foxmail.com.

通讯作者:

孙伟(通信作者),男,助理教授, E-mail: sunw55@mail.sysu.edu.cn。

中图分类号:

TV649

基金项目:

国家自然科学基金(52008408)


Parameter probability statistics and correlation distance analysis of hardfill
Author:
Affiliation:

1.Guangdong Construction Engineering Quality and Safety Inspection Station Co., Ltd., Guangzhou 510600, P. R. China;2.Changjiang Survey Planning, Design and Research Co., Ltd., Wuhan 430010, P. R. China;3. School of Civil Engineering,Sun Yat-Sen University,;4.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai 519082, Guangdong, P. R. China;5.State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 52008408)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    胶凝砂砾石坝筑坝材料具有较大的变异性,有必要研究其参数概率分布形式。通过对3座大坝工程现场试验资料的分析,基于χ2K-S有限比较法对胶凝砂砾石材料参数进行概率统计分析,提出参数分布的推荐概型:采用正态分布作为密度的分布概型;采用对数正态分布作为弹性模量的分布概型;采用对数正态分布作为强度的分布概型;采用β分布作为泊松比ν的分布概型。对胶凝砂砾石坝相关距离问题进行探讨,指出其竖直向相关距离可取0.5~2.0 m,水平向可取5~30 m。

    Abstract:

    The heterogeneity of hardfill is obvious, so it is of necessity to study its parameter’s statistical distribution. Take three hardfill projects with field tests’ data as research objects, the probability and statistical analysis have been done based on χ2 or K-S finite contrast method, and the recommended probability distribution models have been put forward:recommend normal distribution to fit the probability of density; recommend lognormal distribution to fit the probability of modulus of elasticity; recommend lognormal distribution to fit the probability of strength parameters; recommend β distribution to fit the probability of poisson ratio. Moreover, the correlation distance of hardfill dam is also discussed. Results are that the vertical correlation distance and the horizontal correlation distance are 0.5~2.0 m and 5~30 m, respectively.

    参考文献
    [1] 刘中伟, 贾金生, 冯炜, 等. 胶凝砂砾石坝在中小型水利工程中的最新应用与实践[J]. 水利水电技术, 2018, 49(5): 44-49.
    [2] 白文斌. 胶凝砂砾石筑坝施工关键技术浅析[J]. 四川水利, 2019, 40(4): 97-99.
    [3] ZHANG G X, YI L, ZHANG L, et al. New Development of dam construction technology in China [C]//2018 International Conference on Computer, Communications and Mechatronics Engineering, 2018: 337-44.
    [4] 王竞. 考虑多种影响因素的胶凝砂砾石坝强度安全性与剖面稳定性分析[D]. 武汉: 武汉大学, 2018.
    [5] 郭磊, 王佳, 郭利霞, 等. 胶凝砂砾石含泥量对其强度的影响[J]. 人民黄河, 2020, 42(3): 136-139.
    [6] WANG J T, ZHANG M X, JIN A Y, et al. Seismic fragility of arch dams based on damage analysis [J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 58-68.
    [7] XU B, PANG R, ZHOU Y. Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs [J]. Engineering Geology, 2020, 264: 105412.
    [8] HURTADO-LóPEZ G, MAYORAL-VILLA J M. Fragility curves for hardfill dams under seismic loading [J]. Tecnologíay Ciencias Del Agua, 2020, 11(1): 132-168.
    [9] 王莎, 贾金生, 任权, 等. 胶凝砂砾石层面抗剪参数试验研究[J]. 中国水利水电科学研究院学报, 2019, 17(1): 32-38.
    [10] 曹京京, 王忠伟. 不同冻融循环次数下胶凝砂砾石抗冻性能的试验研究[J]. 水电能源科学, 2018, 36(9): 127-129, 166.
    [11] 赵鑫, 何蕴龙. 胶凝砂砾石坝渗流场对温度场的影响[J]. 武汉大学学报(工学版), 2020, 53(4): 283-292.
    [12] JIANG M M, CAI X, GUO X W, et al. Adiabatic temperature rise test of cemented sand and gravel (CSG) and its application to temperature stress prediction of CSG dam [J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
    [13] 王婧红, 王利英, 董卫, 等. 胶凝砂砾石质量控制方法[J]. 南水北调与水利科技(中英文), 2021, 19(2): 393-399.
    [14] YUAN J, LIN P Y, HUANG R, et al. Statistical evaluation and calibration of two methods for predicting nail loads of soil nail walls in China [J]. Computers and Geotechnics, 2019, 108: 269-279.
    [15] YUAN J, LIN P Y, MEI G X, et al. Statistical prediction of deformations of soil nail walls [J]. Computers and Geotechnics, 2019, 115: 103168.
    [16] LIU H F, TANG L S, LIN P Y, et al. Accuracy assessment of default and modified Federal Highway Administration (FHWA) simplified models for estimation of facing tensile forces of soil nail walls [J]. Canadian Geotechnical Journal, 2018, 55(8): 1104-1115.
    [17] LIU H F, MA H H, CHANG D, et al. Statistical calibration of federal highway administration simplified models for facing tensile forces of soil nail walls [J]. Acta Geotechnica, 2021, 16(5): 1509-1526.
    [18] MAHMOODI K, NOORZAD A, MAHBOUBI A. Seismic fragility analysis of a cemented sand-gravel dam considering two failure modes [J]. Computers and Concrete, 2020, 26(6):483-495.
    [19] JIA J S, WANG S, ZHENG C Y, et al. FOSM-Based shear reliability analysis of CSGR dams using strength theory [J]. Computers and Geotechnics, 2018, 97: 52-61.
    [20] 贾金生, 马锋玲, 李新宇, 等. 胶凝砂砾石坝材料特性研究及工程应用[J]. 水利学报, 2006, 37(5): 578-582.
    [21] K?TAPCIG?L S N. A study on the reliability-Based safety analysis of hardfill dams [D]. Ankara:Middle East Technical University, 2010.
    [22] LI X W, ZHANG S F, WU H, et al. Study on stability and reliability of cement-sand-gravel dam [J]. IOP Conference Series: Earth and Environmental Science, 2020, 513: 012035.
    [23] CHEN J Y, LIU P F, XU Q, et al. Seismic analysis of hardfill dams considering spatial variability of material parameters [J]. Engineering Structures, 2020, 211: 110439.
    [24] HARIRI-ARDEBILI M A, SEYED-KOLBADI S M, SAOUMA V E, et al. Random finite element method for the seismic analysis of gravity dams [J]. Engineering Structures, 2018, 171: 405-420.
    [25] 孙伟, 何蕴龙, 袁帅, 等. 考虑材料非均质性的胶凝砂砾石坝随机有限元分析[J]. 水利学报, 2014, 45(7): 828-836.
    [26] 张博庭. 用有限比较法进行拟合优度检验[J]. 岩土工程学报, 1991, 13(6): 84-91.
    [27] 孙伟. 胶凝砂砾石材料性能非均质性及其对坝体工作性态的影响分析研究[D]. 武汉: 武汉大学, 2015.
    [28] COUMOULOS D G, KORYALOS T P. Lean RCC dams-Laboratory testing methods and quality control procedures during construction [C]//Proceedings of the Fourth International Symposium on Roller Compacted Concrete Dams, 17-19 November, 2003, Madrid, Spain, 2003: 233-238.
    [29] HANADA H, TAMEZAWA T, OOYABU K, et al.CSG method using muck excavated from the dam foundation [C]//Proceedings 4th International Symposium on Roller Compacted Concrete Dams, Madrid, 2003: 447-456.
    [30] 张继周, 缪林昌. 岩土参数概率分布类型及其选择标准[J]. 岩石力学与工程学报, 2009, 28(Sup2): 3526-3532.
    [31] 张鹏飞, 张锦堂, 黄天润. 贫胶凝粗粒料在功果桥水电站过水围堰坡面防护中的应用[J]. 水电能源科学, 2013, 31(8): 115-117, 52.
    [32] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1): 37-40, 45.
    [33] VANMARCKE E H. Probabilistic modeling of soil profiles [J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246.
    [34] 中国水电顾问集团贵阳勘测设计研究院. 新型硬填料碾压坝设计技术研究成果总报告[R]. 贵阳, 2011.
    [35] 闫澍旺, 朱红霞, 刘润. 关于随机场理论在土工可靠度计算中应用的研究[J]. 岩土工程学报, 2006, 28(12): 2053-2059.
    [36] 闫澍旺, 朱红霞, 刘润. 天津港土性相关距离的计算研究和统计分析[J]. 岩土力学, 2009, 30(7): 2179-2185.
    [37] 蒋水华. 水电工程边坡可靠度非侵入式随机分析方法[D]. 武汉: 武汉大学, 2014.
    [38] 黄侨, 李莹, 郭宏斌. 混凝土桥梁结构随机场的相关距离分析[J]. 公路交通科技, 2006, 23(11): 44-47.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐通,杨洁,孙伟,何蕴龙,陈贤颖,林沛元.胶凝砂砾石材料参数概率统计和相关距离分析[J].土木与环境工程学报(中英文),2023,45(3):116-125. XU Tong, YANG Jie, SUN Wei, HE Yunlong, CHEN Xianying, LIN Peiyuan. Parameter probability statistics and correlation distance analysis of hardfill[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(3):116-125.10.11835/j. issn.2096-6717.2021.165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-22
  • 在线发布日期: 2023-04-29
文章二维码