氮源水平对微藻深度脱氮除磷耦合生物大分子累积的影响及其细胞响应
CSTR:
作者:
作者单位:

重庆大学 环境与生态学院,重庆 400045

作者简介:

丁婵(1996- ),女,主要从事污水深度处理技术研究,E-mail:2394481205@qq.com。
DING Chan (1996- ), main research interest: advanced wastewater treatment technology, E-mail: 2394481205@qq.com.

通讯作者:

梁志杰(通信作者),男,副教授,博士生导师,E-mail:zhjliang@cqu.edu.cn。

中图分类号:

X703.1

基金项目:

中央高校基本科研业务费(2021CDJJMRH-013);国家自然科学基金(51808066)


Effects of nitrogen source level on macromolecular accumulation coupled with nitrogen and phosphorus removal in microalgae and its cellular response
Author:
Affiliation:

College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China

Fund Project:

Fundamental Research Funds for the Central Universities (No.2021CDJJMRH-013); National Natural Science Foundation of China (No. 51808066)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    比较普通小球藻、蛋白核小球藻和斜生栅藻在不同氮水平下的生长状况和污水深度脱氮除磷效能,并从生物大分子累积角度解析氮源水平对微藻脱氮除磷的影响机制,为实现污水深度脱氮除磷同时收获微藻生产能源以缓解能源危机提供理论依据。结果表明:硝氮为唯一氮源时,微藻生长状况和脱氮除磷效能明显优于以氨氮为唯一氮源的试验组,叶绿素a含量也高于氨氮组;各试验组中硝氮浓度越高,藻细胞数量越多,且小球藻细胞增长量明显高于斜生栅藻;7天内硝氮浓度≤8 mg/L时氮的去除率均能达到98%以上,但氮浓度低的试验组中叶绿素a含量低,这是因为氮是叶绿素合成的重要元素。微藻通过调节细胞内大分子物质含量来适应不同的生存环境,在营养受限制的条件下会消耗自身物质以满足生命活动的需要,氮限制条件会引起细胞内脂质积累,证实了氮源水平控制微藻污水深度脱氮除磷耦合生物大分子累积的可行性。

    Abstract:

    The growth status of Chlorella vulgaris, Chlorella proteinosa and Scenedesmus obliquus under different nitrogen levels and the efficiency of advanced nitrogen and phosphorus removal in sewage were compared, and the effect mechanism of nitrogen source level on nitrogen and phosphorus removal in microalgae was analyzed from the perspective of biomacromolecule accumulation, and a theoretical basis was provided for advanced nitrogen and phosphorus removal in wastewater and harvesting microalgae to produce energy to alleviate energy crisis.The results showed that when nitrate is the only nitrogen source, the growth of microalgae and the efficiency of nitrogen and phosphorus removal were significantly better than that of the experimental group with ammonia nitrogen as the only nitrogen source, and the content of chlorophyll was also higher than that of the ammonia nitrogen group, because nitrogen is an important element of chlorophyll synthesis. The higher the nitrate concentration in each experimental group, the more the number of algae cells, and the growth of chlorella cells was significantly higher than that of Scenedesmus obliquus. Within seven days, the nitrogen removal rate was above 98% when nitrate concentration ≤8 mg/L, but the chlorophyll-a content was low in the experimental group with low nitrogen concentration. Microalgae by adjusting the content of macromolecular substances in the cell to adapt to different living environment, under the condition of nutrition restricted consumes itself material to meet the needs of life activity, nitrogen limit conditions can lead to accumulation of lipid in cells, confirmed the possibility of nitrogen source level controlling on the depth of the wastewater biological nitrogen and phosphorus coupling feasibility of macromolecular accumulated.

    参考文献
    [1] RUIZ-MARIN A, MENDOZA-ESPINOSA L G, STEPHENSON T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater [J]. Bioresource Technology, 2010, 101(1): 58-64.
    [2] 李川, 薛建辉, 赵蓉, 等. 4种固定化藻类对污水中氮的净化能力研究[J]. 环境工程学报, 2009, 3(12): 2185-2188.
    [3] 邓祥元, 丁婉婉, 樊玲波, 等. 2种微藻去除氮、磷能力的比较[J]. 吉林农业大学学报, 2013, 35(6): 694-698, 726.
    [4] LI X, HU H Y, GAN K, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp [J]. Bioresource Technology, 2010, 101(14): 5494-5500.
    [5] RANI V, MARóTI G. Assessment of nitrate removal capacity of two selected eukaryotic green microalgae [J]. Cells, 2021, 10(9): 2490.
    [6] HIGGINS B T, GENNITY I, FITZGERALD P S, et al. Algal-bacterial synergy in treatment of winery wastewater [J]. npj Clean Water, 2018, 1: 6.
    [7] CHANG H X, QUAN X J, ZHONG N B, et al. High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production [J]. Bioresource Technology, 2018, 266: 374-381.
    [8] GENG Y N, CUI D, YANG L M, et al. Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae [J]. Journal of Hazardous Materials, 2022, 423: 127000.
    [9] 韩琳. 高产油脂微藻的筛选及其对生活污水脱氮除磷能力的研究[D]. 济南: 山东大学, 2015.
    [10] DE JAEGER L, VERBEEK R E, DRAAISMA R B, et al. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization [J]. Biotechnology for Biofuels, 2014, 7: 69.
    [11] MARKOU G, DEPRAETERE O, MUYLAERT K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: A study on chlorophyll fluorescence and electron transport [J]. Algal Research, 2016, 16: 449-457.
    [12] LI X T, LI W, ZHAI J, et al. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation [J]. Bioresource Technology, 2019, 273: 368-376.
    [13] SHARMA K K, SCHUHMANN H, SCHENK P M. High lipid induction in microalgae for biodiesel production [J]. Energies, 2012, 5(5): 1532-1553.
    [14] KHAN M I, SHIN J H, KIM J D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products [J]. Microbial Cell Factories, 2018, 17(1): 36.
    [15] KALRA R, GAUR S, GOEL M. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production [J]. Journal of Water Process Engineering, 2021, 40: 101794.
    [16] JI X Y, JIANG M Q, ZHANG J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater [J]. Bioresource Technology, 2018, 247: 44-50.
    [17] KALLA N, KHAN S. Effect of nitrogen, phosphorus concentrations, pH and salinity ranges on growth, biomass and lipid accumulation of Chlorella vulgaris [J]. International Journal of Pharmaceutical Sciences and Research, 2016, 7: 397-405.
    [18] 水质 硝酸盐氮的测定 紫外分光光度法:HJ/T 343—2007 [S]. 北京:中国环境科学出版社,2007.
    [19] 水质 氨氮的测定 纳氏试剂分光光度法:HJ 535—2009 [S]. 北京:中国环境科学出版社,2010.
    [20] 水质 总磷的测定 钼酸铵分光光度法:GB 11893—1989 [S]. 北京: 中国标准出版社,1989.
    [21] 陈明华, 谢良国, 付志强, 等. 丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J]. 环境监测管理与技术, 2016, 28(2): 46-48.
    [22] 陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J]. 湖泊科学, 2006, 18(5): 550-552.
    [23] 唐聪聪. 菌藻共生序批式泥膜系统脱氮除磷效能及作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [24] PISTORIUS A M A, DEGRIP W J, EGOROVA-ZACHERNYUK T A. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy [J]. Biotechnology and Bioengineering, 2009, 103(1): 123-129.
    [25] MENG Y Y, YAO C H, XUE S, et al. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions [J]. Bioresource Technology, 2014, 151: 347-354.
    [26] LIANG Z J, LIU Y, GE F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis [J]. Chemosphere, 2013, 92(10): 1383-1389.
    [27] 刘燕. 小球藻与地衣芽孢杆菌联合体系脱氮除磷效果的研究[D]. 湖南 湘潭: 湘潭大学, 2012.
    [28] SADIQ I M, DALAI S, CHANDRASEKARAN N, et al. Ecotoxicity study of titania (TiO?) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. [J]. Ecotoxicology and Environmental Safety, 2011, 74(5): 1180-1187.
    [29] 章斐, 陈秀荣, 江子建, 等. 不同氮磷浓度下2种无毒微藻的生长特性和脱氮除磷效能[J]. 环境工程学报, 2015, 9(2): 559-566.
    [30] METSOVITI M N, KATSOULAS N, KARAPANAGIOTIDIS I T, et al. Effect of nitrogen concentration, two-stage and prolonged cultivation on growth rate, lipid and protein content of Chlorella vulgaris [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1466-1473.
    [31] ZHU L D, LI S X, HU T Y, et al. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae [J]. Energy Conversion and Management, 2019, 201: 112144.
    [32] WANG B, LAN C Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent [J]. Bioresource Technology, 2011, 102(10): 5639-5644.
    [33] LI Y Q, HORSMAN M, WANG B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans [J]. Applied Microbiology and Biotechnology, 2008, 81(4): 629-636.
    [34] LALIBERTé G, LESSARD P, NOüE J D L, et al. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium phormidium bohneri [J]. Bioresource Technology, 1997, 59(2/3): 227-233.
    [35] PODEVIN M, DE FRANCISCI D, HOLDT S L, et al. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method [J]. Journal of Applied Phycology, 2015, 27(4): 1415-1423.
    [36] 孙凯峰, 肖爱风, 刘伟杰, 等. 氮磷浓度对惠氏微囊藻和斜生栅藻生长的影响[J]. 南方水产科学, 2017, 13(2): 69-76.
    [37] LOUREN?O S O, BARBARINO E, MARQUEZ U M L, et al. Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors [J]. Journal of Phycology, 1998, 34(5): 798-811.
    [38] FERREIRA V S, PINTO R F, SANT'ANNA C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus [J]. Journal of Applied Microbiology, 2016, 120(3): 661-670.
    [39] YAO C H, AI J N, CAO X P, et al. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation [J]. Bioresource Technology, 2012, 118: 438-444.
    [40] WIDJAJA A, CHIEN C C, JU Y H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 13-20.
    [41] GRAVES M V, BURBANK D E, ROTH R, et al. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae [J]. Virology, 1999, 257(1): 15-23.
    [42] LI Y T, HAN D X, SOMMERFELD M, et al. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions [J]. Bioresource Technology, 2011, 102(1): 123-129.
    [43] WANG Z T, ULLRICH N, JOO S, et al. Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii [J]. Eukaryotic Cell, 2009, 8(12): 1856-1868.
    [44] P?IBYL P, CEPáK V, ZACHLEDER V. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris [J]. Journal of Applied Phycology, 2013, 25(2): 545-553.
    [45] RATOMSKI P, HAWROT-PAW M. Influence of nutrient-stress conditions on Chlorella vulgaris biomass production and lipid content [J]. Catalysts, 2021, 11(5): 573.
    [46] ZHU S N, FENG P Z, FENG J, et al. The roles of starch and lipid in Chlorella sp. during cell recovery from nitrogen starvation [J]. Bioresource Technology, 2018, 247: 58-65.
    [47] GUARNIERI M T, NAG A, SMOLINSKI S L, et al. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga [J]. PLoS One, 2011, 6(10): e25851.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁婵,秦然,崔福义,赵志伟,梁志杰.氮源水平对微藻深度脱氮除磷耦合生物大分子累积的影响及其细胞响应[J].土木与环境工程学报(中英文),2023,45(3):183-195. DING Chan, QIN Ran, CUI Fuyi, ZHAO Zhiwei, LIANG Zhijie. Effects of nitrogen source level on macromolecular accumulation coupled with nitrogen and phosphorus removal in microalgae and its cellular response[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(3):183-195.10.11835/j. issn.2096-6717.2022.038

复制
分享
文章指标
  • 点击次数:755
  • 下载次数: 1174
  • HTML阅读次数: 100
  • 引用次数: 0
历史
  • 收稿日期:2022-03-07
  • 在线发布日期: 2023-04-29
文章二维码