稻秆生物炭负载Fe/Ca对化粪池中磷的吸附特性
CSTR:
作者:
作者单位:

1.重庆大学 环境与生态学院;三峡库区生态环境教育部重点实验室,重庆 400045;2.ENFI北京恩菲环保股份有限公司,北京 100038

作者简介:

王润之(2000- ),男,主要从事污水处理与资源化研究,E-mail:runzhiwang2021@163.com。
WANG Runzhi (2000- ), main research interest: wastewater treatment and recycling, E-mail: runzhiwang2021@163.com.

通讯作者:

皇甫小留(通信作者),男,教授,博士生导师,E-mail:huangfuxiaoliu@126.com。

中图分类号:

X703.5

基金项目:

国家重点研发计划(2018YFC1903203);重庆市技术创新与应用发展专项(cstc2019jscx-tjsbX0002)


Adsorption capacity of phosphorus in septic tank by rice straw biochar loaded with Fe/Ca
Author:
Affiliation:

1.College of Environment and Ecology; Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400045, P. R. China;2.Beijing ENFI Environmental Protection Co., Ltd., Beijing 100038, P. R. China

Fund Project:

National Key Research and Development Program of China (No. 2018YFC1903203); Chongqing Technology Innovation and Application Development Special Project (No. cstc2019jscx-tjsbX0002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    实现磷资源的高效回收和农业废弃物的资源化利用具有重要意义。采用氯化铁、硫酸铁、氯化钙对水稻秸秆生物炭(RSB)进行改性,得到3种改性稻秆生物炭(PRSB-Fe、PRSB-FS和PRSB-Ca),采用SEM、XPS、FTIR和BET对其进行表征,并通过批量实验探究其对模拟废水和化粪池粪污分离液中磷酸盐的吸附特性。模拟废水实验结果表明:伪二级动力学方程能更好地描述改性生物炭对磷的吸附过程(R2>0.99),吸附机制以化学吸附为主,吸附等温线均更符合Freundlich方程(20 ℃),表明多层吸附可能起主导作用。共存的Cl-基本不会影响3种改性生物炭对磷的吸附效果;对于初始磷浓度为(12.94±1.51) mg/g、pH值为7.4±0.2的化粪池粪污分离液,PRSB-Fe-5、PRSB-FS-5和PRSB-Ca-5对磷的吸附量分别是10.77、23.35、0.85 mg/g,其中PRSB-FS-5对磷的吸附效果最好,去除率高达97.31%,剩余磷浓度仅有0.37 mg/L,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。

    Abstract:

    It is significant to realize the efficient recovery of phosphorus resource and resource utilization of agricultural wastes. Three kinds of modified rice straw biochar (PRSB-Fe, PRSB-FS and PRSB-Ca) were prepared by modifying rice straw biochar (RSB) with FeCl3, Fe2(SO4)3 and CaCl2, respectively. SEM, XPS, FTIR and BET characterized the modified biochar. Its adsorption capacity for phosphate in simulated wastewater and feces and wastewater separation solution of septic tank was explored by batch experiments. The results of simulated wastewater test showed that the adsorption of phosphorous by three modified biochar was well fitted to the pseudo-second-order kinetic model (R2>0.99), which indicating chemical adsorption was the major. The adsorption isotherms were more consistent with Freundlich equation at 20 ℃, indicating that multilayer adsorption was dominant. In addition, the coexistence of Cl- had little effect on the adsorption capacity of modified biochar. For the feces and wastewater separation solution of septic tank with initial phosphorus concentration of (12.94±1.51) mg/g, pH value of 7.4±0.2, the adsorption capacity of PRSB-Fe-5, PRSB-FS-5 and PRSB-Ca-5 for phosphorus was 10.77, 23.35 and 0.85 mg/g, respectively. PRSB-FS-5 had the best adsorption of phosphorus, with the removal rate as high as 97.31%, and the residual phosphorus concentration was only 0.37 mg/L, reaching the first level A standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).

    参考文献
    [1] CORDELL D, NESET T S S. Phosphorus vulnerability: A qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity [J]. Global Environmental Change, 2014, 24: 108-122.
    [2] NAKARMI A, BOURDO S E, RUHL L, et al. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions [J]. Journal of Environmental Management, 2020, 272: 111048.
    [3] 何强, 何璇, 洪毅怡晖, 等. 铁盐辅助生物除磷工艺研究进展[J]. 土木与环境工程学报(中英文), 2022, 44(1): 160-167.
    [4] 王晓. 我国农村厕所革命研究文献综述[J]. 农业与技术, 2021, 41(15): 174-177.
    [5] 汪浩, 王俊能, 陈尧, 等. 我国农村化粪池污染物去除效果及影响因素分析[J]. 环境工程学报, 2021, 15(2): 727-736.
    [6] 赖竹林, 于振江, 周雪飞, 等. 我国农村化粪池技术发展现状及趋势[J]. 安徽农业科学, 2020, 48(19): 69-72.
    [7] ROSALES E, MEIJIDE J, PAZOS M, et al. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems [J]. Bioresource Technology, 2017, 246: 176-192.
    [8] CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review [J]. Environmental Pollution, 2021, 273: 116448.
    [9] WANG R Z, LI H J, GE G X, et al. Montmorillonite-based two-dimensional nanocomposites: Preparation and applications [J]. Molecules, 2021, 26(9): 2521.
    [10] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33.
    [11] OGINNI O, YAKABOYLU G A, SINGH K, et al. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources [J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103723.
    [12] DENG Y, LI M, ZHANG Z, et al. Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105079.
    [13] ALMANASSRA I W, MCKAY G, KOCHKODAN V, et al. A state of the art review on phosphate removal from water by biochars [J]. Chemical Engineering Journal, 2021, 409: 128211.
    [14] LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144.
    [15] WOOLF D, AMONETTE J E, STREET PERROTT F A, et al. Sustainable biochar to mitigate global climate change [J]. Nature Communications, 2010, 1: 56.
    [16] SOHI S P. Agriculture. Carbon storage with benefits [J]. Science, 2012, 338(6110): 1034-1035.
    [17] 王琳. 农田土壤—生物炭固碳减排的影响因素及潜力估算[D]. 杭州: 浙江大学, 2021.
    [18] LIU N, CHARRUA A B, WENG C H, et al. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study [J]. Bioresource Technology, 2015, 198: 55-62.
    [19] 柴如山, 黄晶, 罗来超, 等. 我国水稻秸秆磷分布及其还田对土壤磷输入的贡献[J]. 中国生态农业学报(中英文), 2021, 29(6): 1095-1104.
    [20] 蒋旭涛, 迟杰. 铁改性生物炭对磷的吸附及磷形态的变化特征[J]. 农业环境科学学报, 2014, 33(9): 1817-1822.
    [21] FENG Y F, LU H Y, LIU Y, et al. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application [J]. Chemosphere, 2017, 185: 816-825.
    [22] YANG Q, WANG X L, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge [J]. Bioresource Technology, 2018, 247: 537-544.
    [23] 水质 总磷的测定 钼酸铵分光光度法:GB 11893—1989 [S].北京:中国标准出版社,1989.
    [24] 曲今垚, 林艳, 孙强, 等. 壳聚糖聚多巴胺改性水凝胶对双氯芬酸钠的吸附实验研究[J]. 土木与环境工程学报(中英文), 2022, 44(1): 177-187.
    [25] TAN G C, SUN W L, XU Y R, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution [J]. Bioresource Technology, 2016, 211: 727-735.
    [26] BORUAH P K, DARABDHARA G, DAS M R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides [J]. Chemosphere, 2021, 268: 129328.
    [27] ZHAO R, WANG Y X, AN Y Y, et al. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation [J]. Journal of Hazardous Materials, 2022, 423: 126917.
    [28] HUANG Y Y, HU C, AN Y Y, et al. Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution [J]. Journal of Hazardous Materials, 2021, 405: 124195.
    [29] WANG X D, LIU H Y, CHEN D, et al. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy [J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4966-4971.
    [30] LI R H, WANG J J, ZHOU B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment [J]. Journal of Cleaner Production, 2017, 147: 96-107.
    [31] NOVAIS S V, ZENERO M D O, BARRETO M S C, et al. Phosphorus removal from eutrophic water using modified biochar [J]. Science of the Total Environment, 2018, 633: 825-835.
    [32] XUE J B, WANG H X, LI P, et al. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments [J]. Science of the Total Environment, 2021, 799: 149454.
    [33] XIAO J, HU R, CHEN G C, et al. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism [J]. Journal of Hazardous Materials, 2020, 399: 123067.
    [34] WANG H B, LIU Y, IFTHIKAR J, et al. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment [J]. Bioresource Technology, 2018, 256: 269-276.
    [35] 马烁, 熊双莲, 熊力, 等. 铁改性海泡石吸附镉和砷效果及其影响因素[J]. 水处理技术, 2019, 45(10): 73-77.
    [36] ELZINGA E J, SPARKS D L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation [J]. Journal of Colloid and Interface Science, 2007, 308(1): 53-70.
    [37] AJMAL Z, MUHMOOD A, USMAN M, et al. Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics [J]. Journal of Colloid and Interface Science, 2018, 528: 145-155.
    [38] WANG S D, KONG L J, LONG J Y, et al. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies [J]. Chemosphere, 2018, 195: 666-672.
    [39] 孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附[J]. 环境科学学报, 2017, 37(8): 2960-2967.
    [40] XU Q Y, CHEN Z B, WU Z S, et al. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration [J]. Bioresource Technology, 2019, 289: 121600.
    [41] SPATARU A, JAIN R, CHUNG J W, et al. Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation [J]. RSC Advances, 2016, 6(104): 101827-101834.
    [42] QIU B B, DUAN F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571: 86-93.
    [43] WU L P, WEI C B, ZHANG S R, et al. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil [J]. Journal of Cleaner Production, 2019, 235: 901-909.
    引证文献
引用本文

王润之,何强,郭程晨,鲍奕铭,何璇,曹钰,李鹏,皇甫小留.稻秆生物炭负载Fe/Ca对化粪池中磷的吸附特性[J].土木与环境工程学报(中英文),2023,45(3):205-214. WANG Runzhi, HE Qiang, GUO Chengchen, BAO Yiming, HE Xuan, CAO Yu, LI Peng, HUANGFU Xiaoliu. Adsorption capacity of phosphorus in septic tank by rice straw biochar loaded with Fe/Ca[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(3):205-214.10.11835/j. issn.2096-6717.2023.265

复制
分享
文章指标
  • 点击次数:527
  • 下载次数: 854
  • HTML阅读次数: 290
  • 引用次数: 0
历史
  • 收稿日期:2021-10-29
  • 在线发布日期: 2023-04-29
文章二维码