考虑分区各向异性和渗流作用的边坡稳定性研究
CSTR:
作者:
作者单位:

1.兰州交通大学 交通运输学院,兰州 730070;2.中国科学院 西北生态环境资源研究院,兰州 730000;3.重庆大学 资源与安全学院,重庆 400044

作者简介:

张帮鑫(1997- ),男,主要从事边坡工程研究,E-mail:zbx724@qq.com。
brief: ZHANG Bangxin (1997- ), main research interest: slope engineering, E-mail: zbx724@qq.com.

通讯作者:

贾剑青(通信作者),男,教授,博士,E-mail:jqjia@mail.lzjtu.cn。

中图分类号:

TU413.62

基金项目:

甘肃省科技计划(20YF8FA042);兰州交通大学“百名青年优秀人才培养计划”(152022)


Slope stability considering zonal anisotropy and seepage effects
Author:
Affiliation:

1.School of Transportation, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China;2.Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, P. R. China;3.School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Science and Technology Program of Gansu Province (No. 20YF8FA042); Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University (No. 152022)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土体强度各向异性和渗流作用是影响边坡稳定性的重要因素。为使稳定性计算时边坡土体强度的各向异性更切合实际,提出对成层边坡土体进行分级加载和分区考虑强度各向异性的方法:将边坡土体最大主应力方向角与成层土相交区域设置为初始分区,然后结合有限元计算结果,推导各成层土各向异性强度参数计算公式,并即时计算各分区内土体强度参数;在逐级施加荷载过程中,根据计算所得土体强度参数,进一步调整初始分区,通过初分、细分和精分3级控制,确定耦合计算分区和各分区土体强度参数。在此基础上,建立考虑土体分区各向异性、未分区各向异性和未分区各向同性3种工况的流固耦合模型,分析边坡体应力场、位移场和渗流场的变化规律和特点,并采用强度折减法计算边坡稳定性。结果表明:考虑土体分区各向异性时,坡体平均应力最大值较未分区各向异性时有所减小,但较未分区各向同性时有所增大,其渗流域和流速较其他两种工况均有所减小;考虑土体分区各向异性时,计算所得边坡稳定性系数为1.109,较其他两种工况分别下降了2.8%和21.3%。

    Abstract:

    Soil strength anisotropy and seepage are important factors affecting the stability of slopes. In order to make the anisotropy of slope soil strength more practical in stability calculation, a method of graded loading and zoning of layered slope soil considering strength anisotropy is proposed. Firstly, the initial zoning is established according to the size distribution of the maximum principal stress direction angle of the slope soil and the intersection area of layered soil, and then, combined with the finite element calculation results, the formula for determining the anisotropy strength parameter of each layered soil is derived and the strength parameter of each zoning is calculated instantly. Secondly, in the process of applying load step by step, the initial partition is further adjusted according to the calculated soil strength parameters, the partition and the corresponding strength parameters of the coupling calculation are determined through three-level control of initial partition, subdivision and fine partition. On this basis, a flow-solid coupling model considering three working conditions: zoned anisotropy, unzoned anisotropy and unzoned isotropy of the soil body is established, and the change laws and characteristics of the stress field, displacement field and seepage field of the slope body are analyzed, and the stability of the slope is calculated using the strength reduction method. The results show that the average stress maximum value of zoned anisotropy is lower than that of unzoned anisotropy, but greater than that of unzoned isotropy, the seepage and flow velocities are lower than those of the other two cases; the calculated slope stability coefficient of zoned anisotropy is 1.109, which is 2.8% and 21.3% lower than those of the other two cases respectively.

    参考文献
    相似文献
    引证文献
引用本文

张帮鑫,贾剑青,赖远明,王宏图,辛成平.考虑分区各向异性和渗流作用的边坡稳定性研究[J].土木与环境工程学报(中英文),2023,45(4):41-48. ZHANG Bangxin, JIA Jianqing, LAI Yuanming, WANG Hongtu, XIN Chengping. Slope stability considering zonal anisotropy and seepage effects[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(4):41-48.10.11835/j. issn.2096-6717.2021.192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期:
文章二维码