基于松动圈理论的软岩大变形隧道锚杆支护优化研究
CSTR:
作者:
作者单位:

1.西安工业大学,建筑工程学院,西安 710021;2.西安工业大学,西安市军民两用土木工程测试技术与毁损分析重点实验室,西安 710021;3.陕西路桥集团有限公司,西安 710000;4.浙江省交通运输科学研究院,杭州 311305

作者简介:

王睿(1981- ),男,博士,副教授,主要从事隧道工程、地下空间与工程研究,E-mail:wangrui@xatu.edu.cn。
brief: WANG Rui (1981- ), PhD, associate professor, main research interests: tunnel engineering, underground space and engineering, E-mail: wangrui@xatu.edu.cn.

通讯作者:

邓祥辉(通信作者),男,教授,E-mail:xianghuideng@xatu.edu.cn。

中图分类号:

TU455.7

基金项目:

国家自然科学基金(51408054);陕西省自然科学基础(2017JM5136);陕西省教育厅专项科研计划(19JK0399);浙江省交通运输科学研究院自主研发项目(ZK202104、ZK202105)


Optimization of bolt support for soft rock large deformation tunnel based on the theory of loose circle
Author:
Affiliation:

1.School of Civil and Architecture Engineering;2.Xi’an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology, Xi’an Technological University, Xi,an 710021, P. R. China;3.Shaanxi Road and Bridge Group Co. Ltd, Xi’an 710000, P. R. China;4.Zhejiang Scientific Research Institute of Transport, Hangzhou 311305, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51408054); Shaanxi Provincial Natural Science Basic Research Project (No. 2017JM5136); Shaanxi Provincial Department of Education Special Research Project (No. 19JK0399); The Independent Scientific Research Project of Zhejiang Scientific Research Institute of Transport (No. ZK202104, ZK202105).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在高地应力软岩区修建隧道时,由于软岩自身强度低、膨胀性强,又受高地应力挤压,若施工措施不当易发生软岩大变形,给工程建设带来巨大困难。根据围岩松动圈理论,采用统一强度准则,考虑中间主应力的影响,分析围岩应力状态,得到适用于软岩大变形隧道围岩松动圈半径计算公式。对安岚高速谢家坡隧道围岩进行弹塑性分析发现,软岩大变形隧道围岩松动圈沿横断面分布并不均匀,呈边墙大拱顶小的趋势,且随大变形级别的升高和支护反力的减小而增大。结合现场测试得到Ⅱ级大变形松动圈厚度拱顶处为6.5~7.0 m,边墙处为7.0~7.5 m;Ⅲ级大变形松动圈厚度拱顶处为7.5~8.0 m,边墙处为8.0~8.5 m,并以松动圈厚度为依据优化系统锚杆长度。对优化段监测可见,围岩变形显著减小,稳定性有效提高。

    Abstract:

    When constructing tunnels in soft rocks with high ground stress, it should be considered that the soft rock has low strength and strong expansibility, and is extruded by high ground stress. Therefore, it is unavoidable to cause large deformation of soft rock if the construction measures are not appropriate, which brings great difficulties to the engineering construction. Based on the theory of surrounding rock loose circle, the unified strength criterion is adopted to analyze the stress state of surrounding rock with consideration of the influence of intermediate principal stress. Then the radius calculation formula of loose circle of surrounding rock of large deformation soft-rock tunnel is obtained. Based on the case of Xiejiapo tunnel of Anlan Expressway, it is found that the distribution of surrounding rock loose circle of large deformation soft-rock tunnel is not uniform along the cross section. And the loose circle tends to be large in the side wall and small in the vault, and increases with the increase of deformation grade and decrease of support reaction force. Combined with field test, it is found that the thickness of loose circle of grade Ⅱ large deformation is 6.5-7.0 m at vault and 7.0-7.5 m at side wall; the thickness of loose circle of grade Ⅲ large deformation is 7.5-8.0 m at vault and 8.0-8.5 m at side wall. Therefore, the length of the system bolt should be optimized based on the thickness of the loose circle. By monitoring the optimized section, it can be seen that the deformation of surrounding rock is reduced significantly and the stability is improved effectively.

    参考文献
    [1] 汪波, 郭新新, 何川, 等. 当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018, 55(5): 1-10.WANG B, GUO X X, HE C, et al. Analysis on the characteristics and development trends of the support technology of high ground stress tunnels in China [J]. Modern Tunnelling Technology, 2018, 55(5): 1-10. (in Chinese)
    [2] ANDRIANI G F. Comment on “Petrographic features influencing basic geotechnical parameters of carbonate soft rocks from Apulia (southern Italy)” [Eng. Geol. 233: 76-97] [J]. Engineering Geology, 2021, 285: 106053.
    [3] GOODARZI S, HASSANPOUR J, YAGIZ S, et al. Predicting TBM performance in soft sedimentary rocks, case study of Zagros mountains water tunnel projects [J]. Tunnelling and Underground Space Technology, 2021, 109: 103705.
    [4] 丁远振, 谭忠盛, 马栋. 高地应力断层带软岩隧道变形特征与控制措施研究[J]. 土木工程学报, 2017, 50(Sup1): 129-134.DING Y Z, TAN Z S, MA D. Study on large deformation characteristics and control measures of soft rock tunnel in fault zone with high geostress [J]. China Civil Engineering Journal, 2017, 50(Sup1): 129-134. (in Chinese)
    [5] KARAMI M, TOLOOIYAN A. Investigating the elastoplasticity of an Australian soft rock based on laboratory test results [J]. Engineering Geology, 2020, 276: 105762.
    [6] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.LEI S X, ZHAO W. Study on mechanism of circumferential yielding support for soft rock tunnel with large deformation [J]. Rock and Soil Mechanics, 2020, 41(3): 1039-1047. (in Chinese)
    [7] 吕彩忠. 基于 Mogi-Coulomb 强度准则的隧道围岩理想弹塑性解答[J]. 土木建筑与环境工程, 2014, 36(6):54-59.LYU C Z. Elastic-perfectly plastic solution of tunnel surrounding rocks using Mogi-Coulomb strength criterion [J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(6):54-59.(in Chinese)
    [8] 张德华, 刘士海, 任少强. 基于围岩—支护特征理论的高地应力软岩隧道初期支护选型研究[J]. 土木工程学报, 2015, 48(1): 139-148.ZHANG D H, LIU S H, REN S Q. Research on selection of preliminary support for tunnel in high ground-stress soft rock based on surrounding rock-support characteristic curve theory [J]. China Civil Engineering Journal, 2015, 48(1): 139-148. (in Chinese)
    [9] KOVA?EVI? M S, BA?I? M, GAVIN K, et al. Assessment of long-term deformation of a tunnel in soft rock by utilizing particle swarm optimized neural network [J]. Tunnelling and Underground Space Technology, 2021, 110: 103838.
    [10] LUNARDI P. The design and construction of tunnels using the approach based on the analysis of controlled deformation in rocks and soils [J]. Tunnels and Tunnelling International, 2005, 5(1): 3-30.
    [11] 张民庆, 黄鸿健, 何志军, 等. 高地应力软岩隧道释放—约束平衡法控制变形技术[J]. 铁道工程学报, 2013, 30(3): 50-57, 76.ZHANG M Q, HUANG H J, HE Z J, et al. Technology for control of deformation of high stress soft rock tunnel with release-constraint balancing method [J]. Journal of Railway Engineering Society, 2013, 30(3): 50-57, 76. (in Chinese)
    [12] 刘宇鹏, 夏才初, 吴福宝, 等. 高地应力软岩隧道长、短锚杆联合支护技术研究[J]. 岩石力学与工程学报, 2020, 39(1): 105-114.LIU Y P, XIA C C, WU F B, et al. A combined support technology of long and short bolts of soft rock tunnels under high ground stresses [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 105-114. (in Chinese)
    [13] 徐栓强, 俞茂宏, 胡小荣. 基于双剪统一强度理论的地下圆形洞室稳定性的研究[J]. 煤炭学报, 2003, 28(5): 522-526.XU S Q, YU M H, HU X R. The stability analysis of circular tunnel based the twin shear unified strength theory [J]. Journal of China Coal Society, 2003, 28(5): 522-526. (in Chinese)
    [14] 薛晓辉, 张军, 宿钟鸣, 等. 高地应力软岩隧道大变形失稳机理及支护对策研究[J]. 公路, 2015, 60(3): 223-228.XUE X H, ZHANG J, SU Z M, et al. Instability mechanism and supporting measure for highway tunnel with high ground stress and soft surrounding rock [J]. Highway, 2015, 60(3): 223-228. (in Chinese)
    [15] 李国良, 刘志春, 朱永全. 兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J]. 现代隧道技术, 2015, 52(1): 62-68.LI G L, LIU Z C, ZHU Y Q. On the large squeezing deformation law and classification criteria for the Lanzhou-Chongqing railway tunnels in soft and high geostress rocks [J]. Modern Tunnelling Technology, 2015, 52(1): 62-68. (in Chinese)
    [16] 杨木高. 木寨岭隧道大变形控制技术[J]. 现代隧道技术, 2019, 56(2): 175-181.YANG M G. Large deformation control techniques for the muzhailing tunnel [J]. Modern Tunnelling Technology, 2019, 56(2): 175-181. (in Chinese)
    [17] 孟尧尧. 高地应力深埋隧道围岩力学特性及稳定性研究[D]. 西安: 西安工业大学, 2019.MENG Y Y. Study on mechanical characteristics and stability of surrounding rock in deep buried tunnel with high geostress [D]. Xi,an: Xi,an Technological University, 2019. (in Chinese)
    [18] SINGH M, SINGH B, CHOUDHARI J. Critical strain and squeezing of rock mass in tunnels [J]. Tunnelling and Underground Space Technology, 2007, 22(3): 343-350.
    [19] MEZGER F, ANAGNOSTOU G, ZIEGLER H J. The excavation-induced convergences in the Sedrun section of the Gotthard Base Tunnel [J]. Tunnelling and Underground Space Technology, 2013, 38: 447-463.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王睿,张煜,黄晓东,邓祥辉,袁岽洋,丁潇.基于松动圈理论的软岩大变形隧道锚杆支护优化研究[J].土木与环境工程学报(中英文),2023,45(4):74-82. WANG Rui, ZHANG Yu, HUANG Xiaodong, DENG Xianghui, YUAN Dongyang, DING Xiao. Optimization of bolt support for soft rock large deformation tunnel based on the theory of loose circle[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(4):74-82.10.11835/j. issn.2096-6717.2021.174

复制
分享
文章指标
  • 点击次数:534
  • 下载次数: 876
  • HTML阅读次数: 96
  • 引用次数: 0
历史
  • 收稿日期:2021-05-08
  • 在线发布日期: 2023-07-14
文章二维码