酸性矿山废水S(-II)对含铬和钼施氏矿物溶解与相转变的影响
CSTR:
作者:
作者单位:

韩山师范学院 化学与环境工程学院,广东 潮州 521041

作者简介:

郑妍婷(1999- ),女,主要从事环境污染修复研究,E-mail:cyhs0514@163.com。
brief: ZHENG Yanting (1999- ), main research interest: environmental pollution remediation, E-mail: cyhs0514@163.com.

通讯作者:

谢莹莹(通信作者),女,博士,E-mail:xieyy@hstc.edu.cn。

中图分类号:

X703.1

基金项目:

国家自然科学基金(41907308);广东省基础与应用基础研究基金(2020A1515010533);广东省普通高校创新团队项目(2017KCXTD023)


Effect of S(-II) on the dissolution and phase transformation of chromium and molybdenum-doped schwertmannite under acid mine drainage conditions
Author:
Affiliation:

School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, Guangdong, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 41907308); Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010533); The Innovation Team Program of Higher Education of Guangdong, China (No. 2017KCXTD023)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    施氏矿物对酸性矿山废水中重金属的环境行为有一定的制约作用,但随着环境条件的改变,施氏矿物可能会溶解并产生相转变,从而引起重金属的再次释放。采用快速化学法合成不同铬、钼含量的重金属负载型施氏矿物,并采用流动柱法结合XRD、SEM及XPS等表征手段探究酸性矿山废水还原性S(-II)对负载不同含量铬和钼的施氏矿物溶解与相转变的影响。结果表明:淋滤液中重金属和硫离子浓度随淋洗天数的增加而下降,并随铬和钼负载含量的增加而明显下降,下降量大小顺序为Sch>0.1Mo0.06Cr-Sch>0.2Mo0.09Cr-Sch,而重金属铬和钼的释放过程以零级动力学模型描述最佳。XRD和XPS表征结果表明:未负载重金属施氏矿物处理组反应后产物主要为针铁矿,而负载的重金属在一定程度上提高了施氏矿物的稳定性,延迟了矿物的相转变。

    Abstract:

    The environmental behavior of heavy metals in acidic mine drainage (AMD) was restricted by schwertmannite. When environmental conditions change, dissolution and phase transformation of schwertmannite will occur, causing redistribution or even releasing of bound heavy metals. This study investigated the dissolution and phase transformation of rapid chemical synthetic schwertmannite which was prepared in the presence of different contents of chromium and molybdenum induced by reducibility S(-II) of acid mine drainage with flow column method combined with XRD, SEM and XPS characterization. The results show that the concentrations of heavy metals and sulfur ions in the leachates decreased with the prolongation of reaction time and the increase of Cr and Mo loading contents, also followed Sch>0.1Mo0.06Cr-Sch>0.2Mo0.09Cr-Sch. Zero-order kinetic was proved to be the best kinetic model for the release processes of Cr and Mo. In addition, according to the XRD and XPS characterization, goethite was the main products of the pure schwertmannite treatments, and the loading heavy metals can improve the stability of minerals to a certain extent and retard the phase transformation of schwertmannite.

    参考文献
    [1] 王英旭. 矿山废水中含砷施氏矿物的环境稳定性试验研究[D]. 重庆: 重庆大学, 2018.WANG Y X. Experimental study of environmental stability of as-containing schwertmannites in mine drainage [D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [2] 朱立超. 改良化学合成施氏矿物及其对地下水中Cr(Ⅵ)吸附试验研究[D]. 重庆: 重庆大学, 2017.ZHU L C. Synthesis, optimization and application of schwertmannite for the remediation of Cr( Ⅵ ) contminat-d groundwater [D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [3] BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters [J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2743-2758.
    [4] BIGHAM J M, SCHWERTMANN U, TRAINA S J, et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2111-2121.
    [5] 王威, 冯坤, 王晓萌, 等. 施氏矿物和水铁矿对砷(Ⅲ)吸附性能的比较研究[J]. 南京农业大学学报, 2020, 43(6): 1116-1123.WANG W, FENG K, WANG X M, et al. Comparison of arsenite adsorption by schwertmannite and ferrihydrite [J]. Journal of Nanjing Agricultural University, 2020, 43(6): 1116-1123. (in Chinese)
    [6] 于长远. 流动柱法研究生物合成施氏矿物对Cr(Ⅵ)的去除效果[D]. 南京: 南京农业大学, 2012.YU C Y. Study on Cr( Ⅵ ) removal by biogenicschwertmannite in a continuous flow column [D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
    [7] 苏贵珍, 陆建军, 陆现彩, 等. 施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验研究[J]. 岩石矿物学杂志, 2009, 28(6): 575-580.SU G Z, LU J J, LU X C, et al. An experimental study of the adsorption of Cu2+ and Acidothiobacillus ferrooxidans on schwertmannite [J]. Acta Petrologica et Mineralogica, 2009, 28(6): 575-580. (in Chinese)
    [8] XIE Y Y, LU G N, YE H, et al. Role of dissolved organic matter in the release of chromium from schwertmannite: Kinetics, repartition, and mechanisms [J]. Journal of Environmental Quality, 2017, 46(5): 1088-1097.
    [9] XIE Y Y, LU G N, YE H, et al. Fulvic acid induced the liberation of chromium from CrO42--substituted schwertmannite [J]. Chemical Geology, 2017, 475: 52-61.
    [10] 李浙英, 梁剑茹, 柏双友, 等. 生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J]. 环境科学学报, 2011, 31(3): 460-467.LI Z Y, LIANG J R, BAI S Y, et al. Characterization and As( Ⅲ ) adsorption properties of schwertmannitesynthesized by chemical or biological procedures [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 460-467. (in Chinese)
    [11] 高美娟, 王英旭, 蔡洪英, 等. 酸碱性环境对含砷施氏矿物长期稳定性的影响[J]. 环境污染与防治, 2021, 43(4): 464-469, 474.GAO M J, WANG Y X, CAI H Y, et al. Effects of acid-alkali environment on the long-term stability of arsenic-containing schwertmannites [J]. Environmental Pollution & Control, 2021, 43(4): 464-469, 474. (in Chinese)
    [12] 李君菲, 谢莹莹, 党志, 等. 酸性矿山废水中铜在含铬施氏矿物上的吸附及其对矿物溶解与相转变的影响[J]. 环境科学学报, 2018, 38(8): 3138-3145.LI J F, XIE Y Y, DANG Z, et al. Adsorption of Cu( Ⅱ ) on chromate-doped schwertmannite and effect on the mineral,s dissolution and phase transformation under acid mine drainage conditions [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3138-3145. (in Chinese)
    [13] 张家宁, 佟雪娇, 乔萌, 等. 不同还原剂对铬污染土壤中六价铬的修复效果研究[J]. 煤炭与化工, 2017, 40(10): 16-20, 75.ZHANG J N, TONG X J, QIAO M, et al. Study on remediation of hexavalent chromium in chromium-contaminated soil by different reducing agents [J]. Coal and Chemical Industry, 2017, 40(10): 16-20, 75. (in Chinese)
    [14] 何雨江, 陈德文, 张成, 等. 土壤重金属铬污染修复技术的研究进展[J]. 安全与环境工程, 2020, 27(3): 126-132.HE Y J, CHEN D W, ZHANG C, et al. Research development of remediation technology of heavy metal chromium polluted soils [J]. Safety and Environmental Engineering, 2020, 27(3): 126-132. (in Chinese)
    [15] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review [J]. Journal of Hazardous Materials, 2013, 250/251: 272-291.
    [16] DE FLORA S, BAGNASCO M, SERRA D, et al. Genotoxicity of chromium compounds. A review [J]. Mutation Research/Reviews in Genetic Toxicology, 1990, 238(2): 99-172.
    [17] CHEN M Q, LU G N, GUO C L, et al. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China [J]. Chemosphere, 2015, 119: 734-743.
    [18] SKIERSZKAN E K, MAYER K U, WEIS D, et al. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru [J]. Science of the Total Environment, 2016, 550: 103-113.
    [19] BURZLAFF A, BEEVERS C, PEARCE H, et al. New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances [J]. Regulatory Toxicology and Pharmacology, 2017, 86: 279-291.
    [20] TRUMBO P, YATES A A, SCHLICKER S, et al. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc [J]. Journal of the American Dietetic Association, 2001,101(3): 294-301.
    [21] VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from schwertmannite: Effect of fulvic acid [J]. Chemical Geology, 2014, 372: 1-11.
    [22] ZHANG S L, JIA S Y, YU B, et al. Sulfidization of As( V )-containing schwertmannite and its impact on arsenic mobilization [J]. Chemical Geology, 2016, 420: 270-279.
    [23] REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in schwertmannite [J]. Applied Geochemistry, 2005, 20(6): 1226-1239.
    [24] XIE Y Y, YI X Y, SHAH K J, et al. Elucidation of desferrioxamine B on the liberation of chromium from schwertmannite [J]. Chemical Geology, 2019, 513: 133-142.
    [25] LIU L D, WANG W M, LIU L, et al. Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: Implications for phenol oxidation under acidic conditions [J]. Applied Catalysis B: Environmental, 2016, 185: 371-377.
    [26] LI J F, XIE Y Y, LU G N, et al. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite [J]. Environmental Science and Pollution Research, 2018, 25(16): 15492-15506.
    [27] ASTA M P, AYORA C, ROMáN-ROSS G, et al. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates [J]. Chemical Geology, 2010, 271(1/2): 1-12.
    [28] XIE Y Y, LU G N, YANG C F, et al. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage [J]. PLoS One, 2018, 13(1): e0190010.
    [29] ZHANG Z, GUO G L, LI X T, et al. Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(VI) adsorption performance [J]. Journal of Hazardous Materials, 2019, 367: 520-528.
    [30] HUANG F G, JIA S Y, LIU Y, et al. Reductive dissolution of ferrihydrite with the release of As(V) in the presence of dissolved S(-II) [J]. Journal of Hazardous Materials, 2015, 286: 291-297.
    [31] REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of schwertmannite in acidic mining lakes [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1185-1197.
    [32] BURTON E D, BUSH R T, SULLIVAN L A, et al. Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4551-4564.
    [33] FERNANDEZ-MARTINEZ A, TIMON V, ROMAN-ROSS G, et al. The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate [J]. American Mineralogist, 2010, 95(8/9): 1312-1322.
    [34] WANG X M, YING H, ZHAO W T, et al. Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate [J]. Environmental Science & Technology, 2021, 55(9): 5857-5867.
    [35] HOUNGALOUNE S, HIROYOSHI N, ITO M. Stability of As( V )-sorbed schwertmannite under porphyry copper mine conditions [J]. Minerals Engineering, 2015, 74: 51-59.
    [36] J?NSSON J, PERSSON P, SJ?BERG S, et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties [J]. Applied Geochemistry, 2005, 20(1): 179-191.
    [37] KIM H J, KIM Y. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage [J]. Chemosphere, 2021, 269: 128720.
    [38] KUMAR N, LEZAMA PACHECO J, NO?L V, et al. Sulfidation mechanisms of Fe( Ⅲ )-(oxyhydr)oxide nanoparticles: A spectroscopic study [J]. Environmental Science: Nano, 2018, 5(4): 1012-1026.
    [39] LI J P, LUO Y, GAN J H, et al. The release characteristics of Cr( Ⅵ ) in contaminated soil by dynamic simulation of acid rain [J]. DEStech Transactions on Engineering and Technology Research, 2017(apetc): 517-524.
    [40] NEUPANE G, DONAHOE R J, BHATTACHARYYA S, et al. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples [J]. Journal of Water Resource and Protection, 2017, 9(8): 890-907.
    [41] 刘璞. 废钼—钴催化剂中钼的回收方法研究[D]. 兰州: 兰州理工大学, 2021.LIU P. Research on the recovery of molybdenum from spent molybdenum and cobalt catalysts [D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
    [42] FONSECA B, MAIO H, QUINTELAS C, et al. Retention of Cr(VI) and Pb(II) on a loamy sand soil: Kinetics, equilibria and breakthrough [J]. Chemical Engineering Journal, 2009, 152(1): 212-219.
    [43] ACERO P, AYORA C, TORRENTó C, et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite [J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4130-4139.
    [44] ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange [J]. Journal of Colloid and Interface Science, 2012, 386(1): 338-343.
    [45] 陈天虎. 苏皖凹凸棒石粘土纳米尺度矿物学及地球化学[D]. 合肥: 合肥工业大学, 2003.CHEN T H. Nanometer scale mineralogy and geochemistry of palygorskite clays in the border of Jiangsu and Anhui Provinces [D]. Hefei: Hefei University of Technology, 2003. (in Chinese)
    [46] XIE Y Y, LU G N, TAO X Q, et al. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism [J]. Journal of Hazardous Materials, 2022, 422: 126952.
    [47] DIAO Z H, YAN L, DONG F X, et al. Ultrasound-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS2 system from aqueous solutions: Performance and mechanism [J]. Journal of Environmental Management, 2021, 278: 111518.
    [48] DENG X H, YANG Y, MEI Y Q, et al. Construction of Fe3O4@FeS2@C@MoS2 Z-scheme heterojunction with sandwich-like structure: Enhanced catalytic performance in photo-Fenton reaction and mechanism insight [J]. Journal of Alloys and Compounds, 2022, 901: 163437.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑妍婷,谢莹莹,赖鹤鋆,陈柔君,唐柳玲.酸性矿山废水S(-II)对含铬和钼施氏矿物溶解与相转变的影响[J].土木与环境工程学报(中英文),2023,45(4):201-210. ZHENG Yanting, XIE Yingying, LAI Heyun, CHEN Roujun, TANG Liuling. Effect of S(-II) on the dissolution and phase transformation of chromium and molybdenum-doped schwertmannite under acid mine drainage conditions[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(4):201-210.10.11835/j. issn.2096-6717.2022.039

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 683
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2022-03-22
  • 在线发布日期: 2023-07-14
文章二维码