不同大变形等级下层理角度对层状软岩隧道的影响
CSTR:
作者:
作者单位:

1.西南交通大学 交通隧道工程教育部重点实验室,成都 610031;2.四川绵九高速公路有限责任公司,四川 江油 621700

作者简介:

潘文韬(1998- ),男,主要从事隧道与地下工程研究, E-mail:1403334583@qq.com。
PAN Wentao (1998- ), main research interests: tunnel and underground engineering, E-mail: 1403334583@qq.com.

通讯作者:

杨文波(通信作者),男,教授,博士生导师,E-mail:yangwenbo1179@hotmail.com。

中图分类号:

TU457

基金项目:

四川省科技计划(2019YFG0001)


Effect of bedding angle of layered soft rock tunnels with different large deformation grades
Author:
Affiliation:

1.Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China;2.Sichuan Mianjiu Expressway Co., Ltd, Jiangyou 621700, Sichuan, P. R. China

Fund Project:

Science and Technology Program Support of Sichuan Province(2019YFG0001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究不同大变形等级下层理角度对层状软岩隧道的影响,依托九绵高速全线软岩大变形隧道,通过岩石力学试验确定遍布节理模型参数,基于数值模拟,探究不同软岩大变形等级(轻微、中等、强烈)下层理角度对层状软岩大变形隧道围岩及支护体系受力变形的影响,并通过现场统计的层理角度与大变形情况对数值模拟结果进行验证。结果表明:1)层理小角度(0°、15°)与大角度(90°)围岩变形、支护结构受力变形较大,随着大变形等级的增大,层理角度引起的围岩支护变化效果越明显。2)随着层理角度的增大,围岩变形从拱底逐渐转移到右拱腰。围岩变形主要发生在隧道轮廓与层理面相切位置,其中拱底及左拱脚对层理角度变化较敏感。3)初支应力偏向及节理塑性区大致与层理弱面法向一致,随着层理角度的增大,节理的剪切塑性区由拱顶、拱底转移到左拱脚、右拱肩,最终偏移到左右拱腰上下位置;相比初支压应力,初支拉应力对层理角度更敏感,垂直节理增大了张拉剪切破坏塑性区贯通的风险,但剪切破坏塑性区半径反而有可能减小。4)现场的统计规律表现为小角度与大角度大变形等级较高,层理角度为60°以下时,岩层破坏发生在拱腰及拱肩处,随着层理角度的增大,有向拱肩发展的趋势,大角度层理时岩层破坏主要发生在拱腰处。

    Abstract:

    This paper aims to explore the influence of bedding angle on layered soft rock tunnel under different deformation grades. Based on the large deformation soft rock tunnels along the Jiumian Expressway, the parameters of ubiquitous joint model were determined through rock mechanical test. Based on the numerical simulation, the influence of bedding angle on the stress and deformation of surrounding rock and supporting system of large deformation tunnel in layered soft rock was studied under different soft rock large deformation levels (slight, medium and strong). The results of numerical simulation were verified by field statistical law of bedding angle and large deformation. The results show that: 1) The deformation and stress of surrounding rock and the supporting structure with small angle (0°, 15°) and large angle (90°) of bedding are large, with the increase of large deformation grade, the effect of surrounding rock and support changes caused by bedding angle is more obvious. 2) The deformation of surrounding rock gradually shifts from the arch bottom to the right arch waist with the increase of bedding angle. The surrounding rock deformation mainly occurs at the position where the tunnel contour is tangent to the bedding plane, and the arch bottom and left arch foot are sensitive to bedding angle. 3) The deflection of the initial support stress and the plastic zone of the joint are roughly consistent with the normal direction of the weak plane of bedding. With the increase of bedding angle, the shear plastic zone of joints shifts from vault and arch bottom to left arch foot and right arch shoulder, and finally shifts to the upper and lower position of left and right arch waist. The initial support tension stress is more sensitive to the bedding angle than the compressive stress, vertical joints increase the risk of tensile and shear failure plastic zone transfixion, but the radius of plastic zone in shear failure may decrease. 4) The statistical law of the site is that the large deformation grade of small angle and large angle is higher,strata failure occurred in the waist and shoulder of the arch when the bedding angle is below 60°, the failure of rock strata tends to develop to the spandrel with the increase of bedding angle. Rock failure mainly occurs in the arch waist at large bedding angles.

    参考文献
    [1] 陈子全, 寇昊, 杨文波, 等. 我国西南部山区隧道施工期支护结构力学行为特征案例分析[J]. 隧道建设(中英文), 2020, 40(6): 800-812.CHEN Z Q, KOU H, YANG W B, et al. Cases analysis of mechanical behavior characteristics of tunnel supporting structure in mountainous areas in southwest China [J]. Tunnel Construction, 2020, 40(6): 800-812. (in Chinese)
    [2] 徐国文, 何川, 代聪, 等. 复杂地质条件下软岩隧道大变形破坏机制及开挖方法研究[J]. 现代隧道技术, 2017, 54(5): 146-154.XU G W, HE C, DAI C, et al. Failure mechanism and excavation method for soft-rock tunnels with large deformation under complex geological conditions [J]. Modern Tunnelling Technology, 2017, 54(5): 146-154. (in Chinese)
    [3] 陈子全, 何川, 吴迪, 等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报, 2018, 53(6): 1237-1244.CHEN Z Q, HE C, WU D, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress [J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. (in Chinese)
    [4] 李国良, 李宁, 丁彦杰. 高地应力软岩大变形隧道防控关键技术研究[J]. 中国铁路, 2020(12): 69-73.LI G L, LI N, DING Y J. Research on key prevention and control technologies for large-deformation high geostress soft rock tunnel [J]. China Railway, 2020(12): 69-73. (in Chinese)
    [5] 张广泽, 邓建辉, 王栋, 等. 隧道围岩构造软岩大变形发生机理及分级方法[J]. 工程科学与技术, 2021, 53(1): 1-12.ZHANG G Z, DENG J H, WANG D, et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels [J]. Advanced Engineering Sciences, 2021, 53(1): 1-12. (in Chinese)
    [6] 徐国文, 何川, 汪耀, 等. 层状软岩隧道围岩破坏的连续-离散耦合分析[J]. 西南交通大学学报, 2018, 53(5): 966-973.XU G W, HE C, WANG Y, et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model [J]. Journal of Southwest Jiaotong University, 2018, 53(5): 966-973. (in Chinese)
    [7] 吴迪, 陈子全, 甘林卫, 等. 高地应力深埋层状围岩隧道非对称变形受力机制研究[J]. 隧道建设(中英文), 2018, 38(11): 1813-1821.WU D, CHEN Z Q, GAN L W, et al. Study of force mechanism of asymmetrical deformation of deep-buried layered surrounding rock tunnel under high ground stress [J]. Tunnel Construction, 2018, 38(11): 1813-1821. (in Chinese)
    [8] 李江腾, 王慧文, 林杭. 横观各向同性板岩层理角度与抗压强度及断裂韧度的相关规律[J]. 湖南大学学报(自然科学版), 2016, 43(7): 126-131.LI J T, WANG H W, LIN H. Relationship among stratification angle, compressive strength, and fracture toughness of transversely isotropic slate [J]. Journal of Hunan University (Natural Sciences), 2016, 43(7): 126-131. (in Chinese)
    [9] 公路隧道设计规范第一册土建工程:JTG 33701.1—2018[S].北京:人民交通出版社, 2019.Specifications for design of highway tunnels-Section 1-Civil engineering: JTG 33701.1—2018 [S]. Beijing: China Communications Press, 2019. (in Chinese)
    [10] 赵永, 杨天鸿. 基于遍布节理模型的深埋巷道稳定性分析[J]. 金属矿山, 2016(5): 36-41.ZHAO Y, YANG T H. Stability analysis of deep buried tunnel based on ubiquitous-joint model [J]. Metal Mine, 2016(5): 36-41. (in Chinese)
    [11] 罗福君, 周晓军. 基于遍布节理模型的顺层边坡稳定性影响因素分析[J]. 铁道标准设计, 2017, 61(7): 141-146.LUO F J, ZHOU X J. Analysis of influence factors on the stability of bedding slope based on joint model [J]. Railway Standard Design, 2017, 61(7): 141-146. (in Chinese)
    [12] 张权, 姜谙男, 吴洪涛, 等. 基于遍布节理模型的隧道循环开挖进尺优化研究[J]. 现代隧道技术, 2020, 57(6): 70-77.ZHANG Q, JIANG A N, WU H T, et al. Research on optimization of tunnel cyclic advance rate based on ubiquitous joint model [J]. Modern Tunnelling Technology, 2020, 57(6): 70-77. (in Chinese)
    [13] SAINSBURY B, PIERCE M, IVARS D M. Simulation of rock mass strength anisotropy and scale effects using a Ubiquitous Joint Rock Mass(UJRM) model [C]// Proceedings First International FLAC / DEM Symposium on Numerical Modeling.Minneapolis:Itasca, 2008: 1-10.
    [14] 张伯虎, 马浩斌, 田小朋, 等. 层状页岩力学参数的各向异性研究[J]. 地下空间与工程学报, 2020, 16(Sup2): 634-638.ZHANG B H, MA H B, TIAN X P, et al. Deep layered shale mechanical parameters anisotropy study [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Sup2): 634-638. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘文韬,何川,吴枋胤,徐迪,王飞,杨文波,寇昊.不同大变形等级下层理角度对层状软岩隧道的影响[J].土木与环境工程学报(中英文),2023,45(5):94-105. PAN Wentao, HE Chuan, WU Fangyin, XU Di, WANG Fei, YANG Wenbo, KOU Hao. Effect of bedding angle of layered soft rock tunnels with different large deformation grades[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(5):94-105.10.11835/j. issn.2096-6717.2021.198

复制
分享
文章指标
  • 点击次数:378
  • 下载次数: 657
  • HTML阅读次数: 131
  • 引用次数: 0
历史
  • 收稿日期:2021-06-18
  • 在线发布日期: 2023-08-24
文章二维码