基于车桥振动的桥梁振型识别及主梁挠度计算方法
CSTR:
作者:
作者单位:

1.山东建筑大学 交通工程学院,济南 250101;2.山东高速集团有限公司,济南 250098

作者简介:

亓兴军(1974- ),男,博士,教授,主要从事桥梁快速评估与健康监测研究,E-mail:qxj123@163.com。
QI Xingjun (1974- ), PhD, professor, main research interests: rapid evaluation and health monitoring of bridges, E-mail: qxj123@163.com.

中图分类号:

U441.3

基金项目:

山东省交通运输厅科技计划(2020B69);山东省高等学校土木结构防灾减灾协同创新中心项目(XTM201904)


Vibration mode identification of bridge girder and deflection calculation of main girder based on vehicle-bridge vibration
Author:
Affiliation:

1.School of Traffic Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China;2.Shandong Hi-speed Co., Ltd, Jinan 250098, P. R. China

Fund Project:

Science and Technology Plan Project of Shandong Provincial Department of Transportation (No.2020B69); Project of Collaborative Innovation Center for Disaster Prevention and Mitigation of Civil Structure in Institutions of Higher Learning of Shandong Province (No. XTM201904)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    根据桥梁间接测量法的基本原理,对一座三跨连续梁桥建立车桥振动有限元模型,提取匀速通过桥梁时车辆竖向加速度时程响应,利用中心差分法计算接触点加速度时程响应,采用快速傅里叶变换得到加速度频谱图,应用峰值拾取法识别出桥梁的前三阶频率;利用带通滤波技术从接触点竖向加速度响应中提取与桥梁频率相关的分量响应,通过希尔伯特变换得到测试桥梁的前三阶振型,并与有限元理论振型进行比较。结果表明:车体质量的改变对于振型识别没有明显影响;车速较低时对于振型的识别不利,但选择合适的驱车速度仍能够保证振型的识别精度。基于桥梁有限元模型,将识别的振型进行质量归一化,计算主梁的测试位移柔度矩阵,设计桥梁标准荷载试验方案,利用柔度矩阵计算主梁在试验荷载下的预测挠度,并与理论挠度进行比较。结果表明,在合适的车速下,预测挠度与理论挠度误差基本满足工程精度要求。

    Abstract:

    According to the basic principle of bridge indirect measurement, the finite element model of vehicle-bridge coupled vibration is established for a three-span continuous girder bridge. The time-history response of the vertical acceleration is extracted when the vehicle passes the bridge at a constant speed. The acceleration spectrum is obtained by using fast Fourier transform. The acceleration spectrum is obtained by using fast Fourier transform. The central difference method is used to calculate the time-history response of the contact point acceleration. The first three frequencies of the bridge are identified by the peak picking method. The bandpass filtering technology is used to extract the component response related to the bridge frequency from the vertical acceleration response of the contact points, the first three modes of the bridge are obtained by Hilbert transform. The identified mode shapes are compared with the finite element theoretical mode shapes. The results show that the change of vehicle mass has no obvious effect on modal identification. Although the low speed is unfavorable to the mode identification, the accuracy of mode identification can be ensured by selecting the appropriate speed. Based on the finite element model of the bridge, the mass of the identified modes is normalized, the test displacement flexibility matrix of the main girder is calculated, and the standard load test scheme of the bridge is designed. The flexibility matrix was used to predict the deflection of the main girder under the test load, and compared with the theoretical deflection. The results show that the errors of predicted deflection and theoretical deflection meet the requirements of engineering accuracy.

    参考文献
    [1] 范立础. 桥梁工程[M]. 3版. 北京: 人民交通出版社, 2017.FAN L C. Bridge engineering [M]. 3rd edition. Beijing: People,s Communications Press, 2017.
    [2] U.S. Department of Transportation. National transportation statistic 2015-Bureau of Transportation Statistics [R]. Washingtion, DC: U. S. Department of Transportation, 2015.
    [3] Ministry of Land, Infrastructure, Transport and Tourism. White paper on land, infrastructure, transport and tourism in Japan [R]. Tokyo, Janpan: Ministry of Land, Infrastructure, Transport and Tourism. 2013.
    [4] CARDEN E P, FANNING P. Vibration based condition monitoring: A review [J]. Structural Health Monitoring, 2004, 3(4): 355-377.
    [5] REN W X, DE ROECK G. Structural damage identification using modal data. I: Simulation verification [J]. Journal of Structural Engineering, 2002, 128(1): 87-95.
    [6] YANG Y B, LIN C W, YAU J D. Extracting bridge frequencies from the dynamic response of a passing vehicle [J]. Journal of Sound and Vibration, 2004, 272(3/4/5): 471-493.
    [7] 杨永斌.非传统思维的桥梁监测法[J].桥梁, 2015, 66(4): 34-36.YANG Y B. Bridge non-traditional monitoring method [J]. Bridge, 2015, 66(4): 34-36.
    [8] 陈上有, 夏禾. 从过桥车辆响应中识别桥梁结构基本自振频率的方法[J]. 工程力学, 2009, 26(8): 88-94.CHEN S Y, XIA H. An identification method for fundamental frequency of bridge from dynamic responses due to passing vehicle [J]. Engineering Mechanics, 2009, 26(8): 88-94. (in Chinese)
    [9] 谢天宇. 桥梁动态讯息间接测量法的多种工况分析研究[D]. 重庆: 重庆大学, 2017.XIE T Y. A study on the working conditions analysis for the bridge indirect measurement method [D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [10] 姜鸿, 彭浪. 基于频率的桥梁承载能力力快速评价方法研究[J]. 公路交通科技(应用技术版), 2020, 16(2): 236-239.JIANG H, PENG L. Research on rapid evaluation method of bridge bearing capacity based on frequency [J]. Highway Traffic Science and Technology (Applied Technology Edition), 2020, 16(2): 236-239. (in Chinese)
    [11] 李焕兰. 简支梁桥损伤状态下车桥耦合动态响应分析[D]. 辽宁 大连: 大连海事大学, 2015.LI H L. Dynamic response analysis of vehicle-bridge coupling under damaged state of simply supported girder bridge [D]. Dalian, Liaoning: Dalian Maritime University, 2015. (in Chinese)
    [12] Guide to ANSYS user programmable features [M]. SAS IP, Inc, 1998.
    [13] 刘世忠. 双层公路钢桁梁桥车桥耦合振动研究[D]. 西安: 长安大学, 2015.LIU S Z. Research on vehicle-bridge coupling vibration of double layer highway steel truss beam [D]. Xi, an: Chang,an University, 2015. (in Chinese)
    [14] 王希. 由车辆响应识别桥梁固有频率的方法研究[D]. 长沙: 中南大学, 2009.WANG X. Research on natural frequency identification method of bridge based on vehicle response [D]. Changsha: Central South University, 2009.
    [15] 杨晓天. 桥面不平整下连续梁桥频率的间接识别[D]. 济南: 山东建筑大学, 2019.YANG X T. Frequency identification of continuous bridge based on indirect method considering the uneven deck [D]. Jinan: Shandong Jianzhu University, 2019. (in Chinese)
    [16] 李国豪. 桥梁结构稳定与振动[M]. 北京:中国铁道出版社, 2003.LI G H. Structure stability and vibration of bridges [M]. Beijing: China Railway Publishing House, 2003. (in Chinese)
    [17] YANG Y B, ZHANG B, QIAN Y, et al. Contact-point response for modal identification of bridges by a moving test vehicle [J]. International Journal of Structural Stability and Dynamics, 2018, 18(5): 1850073.
    [18] BIGGS J M. Introduction to structural dynamics [M]. New York, USA: McGraw-Hill College, 1964.
    [19] 陈钊. 车轮冲击力测量与桥梁性能快速评估[D]. 南京: 东南大学, 2017.CHEN Z. Tire force measurement and rapid bridge test [D]. Nanjing: Southeast University, 2017. (in Chinese)
    [20] 亓兴军, 肖志全, 张荣凤. 斜交梁桥频率间接识别效果的影响参数[J]. 土木与环境工程学报(中英文), 2020, 42(6): 119-126.QI X J, XIAO Z Q, ZHANG R F. Influence parameters of frequency indirect identification effect for oblique beam bridge [J]. Journal of Civil and Environmental Engineering, 2020, 42(6): 119-126. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

亓兴军,亓圣,王珊珊,丁晓岩.基于车桥振动的桥梁振型识别及主梁挠度计算方法[J].土木与环境工程学报(中英文),2023,45(5):191-201. QI Xingjun, QI Sheng, WANG Shanshan, DING Xiaoyan. Vibration mode identification of bridge girder and deflection calculation of main girder based on vehicle-bridge vibration[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(5):191-201.10.11835/j. issn.2096-6717.2021.196

复制
分享
文章指标
  • 点击次数:491
  • 下载次数: 950
  • HTML阅读次数: 116
  • 引用次数: 0
历史
  • 收稿日期:2021-06-08
  • 在线发布日期: 2023-08-24
文章二维码