Abstract:The coupled masonry wall is a joint member that connects two independent walls and limbs together and forces together. It is the middle link from member to structure in masonry research. Most of the existing bi-limb wall tests use specimens consisting of two rectangular vertical wall limbs to compare the crack failure law and bearing capacity of complex vertical bi-limb wall with that of the single wall. It is of great significance to study seismic performance at the structural level. Based on the single masonry wall test, this paper designs three typical facade double limb masonry walls for low cycle repeated load test, compares and analyzes the seismic performance differences of each double limb wall, such as hysteretic loop and bearing capacity; combined with the test phenomenon, the mechanical model of masonry wall rotating failure along the inclined crack is established, and the calculation method of horizontal bearing capacity of "L" facade masonry wall is proposed, and compared with the test data. The results show that when subjected to loading in different horizontal directions, the seismic ability of masonry wall with asymmetric facade shape has obvious directional characteristics, and the crack development law and failure mode of the double limb masonry wall are basically consistent with that of the single limb wall; the calculation method of the horizontal bearing capacity proposed in this paper has a good correspondence with the actual failure mode of the wall, and has a clearer physical meaning than the inclined crack failure of the wall between windows. The calculation results of the horizontal bearing capacity are in good agreement with the experimental values of the single wall and the double limb wall.