考虑腐蚀作用的钢框架结构连续性倒塌分析
CSTR:
作者:
作者单位:

1.西安建筑科技大学,土木工程学院,西安 710055;2.西安建筑科技大学,国家级土木工程虚拟仿真实验教学中心,西安 710055;3.西安建筑科技大学,安德学院,西安 710055;4.西安建筑科技大学,资源工程学院,西安 710055

作者简介:

黄莺(1979- ),女,博士,副教授,主要从事结构连续性倒塌及安全风险研究,E-mail:cch-by@163.com。
HUANG Ying (1979- ), PhD, associate professor, main research interests: progressive collapse and security risk of structure, E-mail: cch-by@163.com.

中图分类号:

TU391;TU501

基金项目:

陕西省自然科学基金(2020JM-494);国家自然科学基金(51678476)


Progressive collapse analysis of steel frame structures with corrosion effect
Author:
Affiliation:

1.School of Civil Engineering, Xi,an University of Architecture & Technology, Xi,an 710055, P. R. China;2.National Experimental Teaching Center for Civil Engineering Virtual Simulation , Xi,an University of Architecture & Technology, Xi,an 710055, P. R. China;3.School of Ande, Xi,an University of Architecture & Technology, Xi,an 710055, P. R. China;4.School of Resources Engineering, Xi,an University of Architecture & Technology, Xi,an 710055, P. R. China

Fund Project:

Natural Science Foundation of Shaanxi (No. 2020JM-494); National Natural Science Foundation of China (No. 51678476)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为研究大气环境长期作用下钢框架结构的抗连续性倒塌性能,建立钢结构时变腐蚀模型预测构件截面面积和力学性能随服役时间的退化情况,并以一栋处于Ⅲ级大气腐蚀环境中的多层钢框架建筑为研究对象,在服役期内的不同阶段对其进行Pushdown分析。将塑性荷载系数、极限荷载系数和最大竖向位移作为结构抗倒塌能力的评价指标,通过灵敏度分析得到不同材料参数对各指标的影响情况,并基于回归分析拟合评价指标随体积损失率的退化规律。结果表明:腐蚀会导致钢框架的承载力和延性发生退化,其中延性的劣化更加明显;承载力指标的退化主要归因于材料强度的降低和构件截面面积的减少,延性指标的退化主要与材料断裂应变的减小有关;评价指标与结构体积损失率之间有较强的线性关系,可基于此对其退化情况进行定性预测。

    Abstract:

    In order to research the resistance ability to progressive collapse of steel frame structure under the long-term effects of atmospheric environment, a time-dependent corrosion model of steel structure is developed to predict the changes of cross-sectional area and mechanical properties of the members. A classical multi-story steel frame structure in a Class Ⅲ atmospheric corrosion environment is studied and the Pushdown analysis is performed at different stages of its service time. The first peak load factor, the ultimate load factor and the ultimate deformation are used as evaluation indexes for the collapse resistance ability of the structure. The influences of different material parameters on the evaluation indexes are obtained by sensitivity analysis. The variation rules of evaluation indexes with volume loss rate are obtained based on regression analysis. The results show that corrosion causes degradation of the bearing capacity and ductility of the steel frame structure, especially ductility degradation. The degradation of bearing capacity is mainly attributed to the reduction of material strength and cross-sectional area of the members. The degradation of ductility is attributed to the decrease in steel elongation. There is a strong linear relationship between the evaluation indexes and the volume loss rate, which can be used to qualitatively predict the degradation of structural performance.

    参考文献
    [1] KIAKOJOURI F, DE BIAGI V, CHIAIA B, et al. Progressive collapse of framed building structures: Current knowledge and future prospects [J]. Engineering Structures, 2020, 206: 110061.
    [2] YU X H, QIAN K, LU D G, et al. Progressive collapse behavior of aging reinforced concrete structures considering corrosion effects [J]. Journal of Performance of Constructed Facilities, 2017, 31(4): 04017009.
    [3] ZHANG L, WEI T Y, LI H Y, et al. Effects of corrosion on compressive arch action and catenary action of RC frames to resist progressive collapse based on numerical analysis [J]. Materials, 2021, 14(10): 2662-2681.
    [4] FENG D C, XIE S C, LI Y, et al. Time-dependent reliability-based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect [J]. Structural Safety, 2021, 89: 102061.
    [5] 史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53-60.SHI W Z, TONG L W, CHEN Y Y, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams [J]. Journal of Building Structures, 2012, 33(7): 53-60. (in Chinese)
    [6] GARBATOV Y, PARUNOV J, KODVANJ J, et al. Experimental assessment of tensile strength of corroded steel specimens subjected to sandblast and sandpaper cleaning [J]. Marine Structures, 2016, 49: 18-30.
    [7] 徐善华, 张宗星, 苏超, 等. 中性盐雾环境锈蚀H型钢柱抗震性能试验研究[J]. 建筑结构学报, 2019, 40(1): 49-57.XU S H, ZHANG Z X, SU C, et al. Experimental study on seismic behavior of corroded H-shaped steel columns under neutral salt spray environment [J]. Journal of Building Structures, 2019, 40(1): 49-57. (in Chinese)
    [8] 曹琛, 郑山锁, 胡卫兵, 等. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.CAO C, ZHENG S S, HU W B, et al. Review of research on mechanical properties of steel structure under atmospheric environment corrosion [J]. Materials Reports, 2020, 34(11): 11162-11170. (in Chinese)
    [9] 胡晓鹏, 仲帅, 彭刚, 等. 锈蚀脚手架钢管轴压稳定性试验研究[J]. 土木与环境工程学报(中英文), 2022, 44 (6): 136-143.HU X P, ZHONG S, PENG G, et al. Experimental study of axial compression stability of corroded steel tube in scaffold [J]. Journal of Civil and Environmental Engineering 2022, 44 (6): 136-143. (in Chinese)
    [10] 徐善华, 聂彪, 张海江. 基于概率密度演化理论的锈蚀钢梁时变可靠度分析[J]. 湖南大学学报(自然科学版), 2020, 47(7): 75-83.XU S H, NIE B, ZHANG H J. Time-dependent reliability analysis of corroded steel beam based on probability density evolution theory [J]. Journal of Hunan University (Natural Sciences), 2020, 47(7): 75-83. (in Chinese)
    [11] 建筑钢结构防腐蚀技术规程: JGJ/T 251—2011[S]. 北京: 中国建筑工业出版社, 2012.Technical specification for anticorrosion of building steel structure: JGJ/T 251—2011 [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [12] 秦广冲, 兰涛, 苏健兴, 等. 不同参数下锈损H型钢柱抗震性能数值分析[J]. 钢结构, 2018, 33(10): 131-135.QIN G C, LAN T, SU J X, et al. Numerical analysis of seismic behavior of corroded H-steel column under different parameters [J]. Steel Construction, 2018, 33(10): 131-135. (in Chinese)
    [13] 王友德, 史涛, 徐善华, 等. 一般大气环境锈蚀钢柱抗震性能试验与数值分析[J]. 土木工程学报, 2021, 54(6): 62-78.WANG Y D, SHI T, XU S H, et al. Experimental research and numerical analysis on the seismic performance of steel columns corroded in general atmospheric environment [J]. China Civil Engineering Journal, 2021, 54(6): 62-78. (in Chinese)
    [14] LI H H, CAI X H, ZHANG L, et al. Progressive collapse of steel moment-resisting frame subjected to loss of interior column: Experimental tests [J]. Engineering Structures, 2017, 150: 203-220.
    [15] SHENG J, XIA J W, MA R W. Experimental study on the coupling effect of sulfate corrosion and loading on the mechanical behavior of steel and H-section beam [J]. Construction and Building Materials, 2018, 189: 711-718.
    [16] LIN S C, YANG B, KANG S B, et al. A new method for progressive collapse analysis of steel frames [J]. Journal of Constructional Steel Research, 2019, 153: 71-84.
    [17] GSA. Alternate path analysis and design guidelines for progressive collapse resistance [S]. Washington, DC: The US General Services Administration (GSA), 2013.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄莺,李嘉晨,朱彦飞,潘柳景泰,杜树.考虑腐蚀作用的钢框架结构连续性倒塌分析[J].土木与环境工程学报(中英文),2023,45(6):21-28. HUANG Ying, LI Jiachen, ZHU Yanfei, PAN Liujingtai, DU Shu. Progressive collapse analysis of steel frame structures with corrosion effect[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(6):21-28.10.11835/j. issn.2096-6717.2022.053

复制
分享
文章指标
  • 点击次数:485
  • 下载次数: 685
  • HTML阅读次数: 78
  • 引用次数: 0
历史
  • 收稿日期:2021-12-29
  • 在线发布日期: 2023-11-13
文章二维码