预制装配式楼盖水平地震作用计算方法
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院,重庆400045;2.中建四局华南建设有限公司,广州 510700

作者简介:

姜凯旋(1989- ),男,博士生,高级工程师,主要从事建筑结构抗震、装配式建筑产业化、智能建造集成应用研究,E-mail:842706222@qq.com。

通讯作者:

李江(通信作者),男,博士,副教授,E-mail: lijiangcqu@cqu.edu.cn。

中图分类号:

TU311.4

基金项目:

国家重点研发计划(2022YFC3801800);重庆市博士后留渝项目(2020LY05);黑龙江科技项目:省-院合作项目(YS20A14)


Analysis method for horizontal seismic action of precast concrete floors
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.China Construction Fourth Division South China Construction Co., LTD, Guangzhou 510700, P. R. China

Fund Project:

National Key Research and Development Program of China (No. 2022YFC3801800); Foundation for Research in Chongqing after Finishing Postdoctoral Research (No. 2020LY05); Science and Technology Plan of Heilongjiang Province-HITAD Cooperation Project (No. YS20A14)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对预制装配式楼盖,按照合理的楼盖水平地震作用计算方法进行设计,可保证抗侧力主体结构破坏前楼盖保持水平传力的整体性。利用有限元软件(ETABS)对某5层框架结构模型进行中、大震弹塑性时程分析,并与底部剪力法、ASCE7-10推荐的经验放大法计算值进行对比,发现时程分析所得加速度值比后两种方法计算值偏大,说明用底部剪力法、经验放大法计算楼盖水平地震作用并进行连接设计存在安全隐患。基于ASCE7-16,考虑中美抗震区划及场地类别等差异,提出与中国抗震设计规范协调并考虑高阶振型影响的模态叠加法。针对不同地震烈度,利用提出的计算方法进行算例分析,计算结果表明:楼层加速度放大系数k沿建筑高度分布趋势一致;楼盖中震下实际水平地震作用SEhk中和大震下实际水平地震作用SEhk大分别能满足γEhSEhk中Rd/γRESEhk大Rk,即用所提方法计算楼盖水平地震作用并进行连接设计,楼盖可达到“中震弹性、大震不屈服”的性能目标。

    Abstract:

    This paper proposes a reasonable method for calculating the horizontal seismic action of precast concrete floors. This method can be used to ensure the integrity of these kinds of floors to transfer the horizontal force caused by earthquakes. Firstly, a typical 5-story frame structure model is built for further analysis. The acceleration values obtained by the elastoplastic time-history analysis are larger than those calculated using the equivalent lateral force (ELF) method or empirical amplification (EA) method which was proposed by ASCE 7-10. Therefore, both the ELF and EA methods underestimate the horizontal acceleration (i.e., horizontal seismic action) of the floors, which would lead to unsafe design in engineering practice. Secondly, the modal superposition (MS) method is proposed, in which the key parameters specified by ASCE7-16 were employed and modified to coordinate with the requirements of the seismic design codes in China. The MS method is employed for calculating the accelerations of the 5-story model in different seismic intensity areas. Lastly, the analysis results were compared with those obtained from the elastoplastic time-history analysis, which indicates that the amplification coefficients of the floor acceleration (k) have a similar distribution trend along with the building height. Moreover, the precast concrete floors designed using the MS method could meet the seismic performance objective “Keep elastic under moderate earthquake and unyielding under rare earthquake”.

    参考文献
    [1] 徐有邻. 由地震引发对预制预应力圆孔板的思考[J]. 建筑结构, 2008, 38(7): 7-9.XU Y L. Thoughts on precast prestressed circular hole slab caused by earthquake [J]. Building Structure, 2008, 38(7): 7-9. (in Chinese)
    [2] 毕琼, 冯远, 易丹. 104所农村中小学砌体结构校舍抗震设计思路及震害分析[J]. 建筑结构, 2010, 40(9): 141-144.BI Q, FENG Y, YI D. Seismic hazards analysis and design concepts of masonry-concrete structures for 104 rural school buildings [J]. Building Structure, 2010, 40(9): 141-144. (in Chinese)
    [3] 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [4] ASCE7. Minimum design loads for buildings and other structures [M]. Reston, VA: American Society of Civil Engineers, 2010.
    [5] PCI. PCI manual for the design of hollow core slabs and walls [M]. Chicago, IL. Precast/Prestressed Concrete Institute, 2015.
    [6] RODRIGUEZ M E, RESTREPO J I, CARR A J. Earthquake-induced floor horizontal accelerations in buildings [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 693-718.
    [7] IVERSON J K, HAWKINS N M. Performance of precast/prestressed concrete building structures during northridge earthquake [J]. PCI Journal, 1994, 39(2): 38-55.
    [8] FLEISCHMAN R, NAITO C J, RESTREPO J, et al. Seismic design methodology for precast concrete diaphragms. Part 1: Design framework [J]. PCI Journal, 2005, 50(5): 68-83.
    [9] FLEISCHMAN R B, GHOSH S K, NAITO C J, et al. Seismic design methodology for precast concrete diaphragms. Part 2: Research program [J]. PCI Journal, 2005, 50(6): 14-31.
    [10] FLEISCHMAN R B, RESTREPO J I, NAITO C J, et al. Integrated analytical and experimental research to develop a new seismic design methodology for precast concrete diaphragms [J]. Journal of Structural Engineering, 2013, 139(7): 1192-1204.
    [11] NAITO C, REN R R. An evaluation method for precast concrete diaphragm connectors based on structural testing[J]. PCI Journal, 2013, 58(2): 106-118.
    [12] FLEISCHMAN R B. Development of a seismic design methodology for precast concrete floor diaphragms [C]//Proceedings of the International FIB Symposium 2008 - Tailor Made Concrete Structures: New Solutions for our Society, 2008. 133-139.
    [13] FLEISCHMAN R B, WAN G. Appropriate overstrength of shear reinforcement in precast concrete diaphragms [J]. Journal of Structural Engineering, 2007, 133(11): 1616-1626.
    [14] ZHANG D, FLEISCHMAN R, NAITO C J, et al. Experimental evaluation of pretopped precast diaphragm critical flexure joint under seismic demands [J]. Journal of Structural Engineering, 2011, 137: 1063-1074.
    [15] ZHANG D C. Examination of precast concrete diaphragm seismic response by three-dimensional nonlinear transient dynamic analyses [D]. Tucson, AZ, USA: The University of Arizona, 2010.
    [16] SCHOETTLER M J. Seismic demands in precast concrete diaphragms [D]. San Diego, CA, USA: University of California, San Diego, 2010.
    [17] SCHOETTLER M J, BELLERI A, ZHANG D C, et al. Preliminary results of the shake-table testing for the development of a diaphragm seismic design methodology [J]. PCI Journal, 2009, 54(1): 100-124.
    [18] ASCE7. Minimum design loads and associated criteria for buildings and other structures [M]. Reston, VA: American Society of Civil Engineers, 2017.
    [19] 吴方伯, 陈立, 刘亚敏. 预应力混凝土空心叠合板试验[J]. 建筑科学与工程学报, 2008, 25(4): 88-92.WU F B, CHEN L, LIU Y M. Experiment on prestressed concrete hollow-core composite slabs [J]. Journal of Architecture and Civil Engineering, 2008, 25(4): 88-92. (in Chinese)
    [20] 吴方伯, 刘彪, 邓利斌, 等. 预应力混凝土叠合空心楼板静力性能试验研究[J]. 建筑结构学报, 2014, 35(12): 10-19.WU F B, LIU B, DENG L B, et al. Experimental study on static behavior of prestressed concrete composite hollow floors [J]. Journal of Building Structures, 2014, 35(12): 10-19. (in Chinese)
    [21] 吴方伯, 刘彪, 罗继丰. 预应力混凝土叠合空心楼板的受剪性能试验研究[J]. 工程力学, 2016, 33(3): 196-203.WU F B, LIU B, LUO J F. Experimental study on shear resisting properties of prestressed concrete composite hollow core slabs [J]. Engineering Mechanics, 2016, 33(3): 196-203. (in Chinese)
    [22] 许清风, 韩重庆, 李向民, 等. 不同持荷水平下预应力混凝土空心板耐火极限试验研究[J]. 建筑结构学报, 2013, 34(3): 20-27.XU Q F, HAN C Q, LI X M, et al. Experimental research on fire endurance of PC hollow-core slab exposed to fire under different load levels [J]. Journal of Building Structures, 2013, 34(3): 20-27. (in Chinese)
    [23] 陈振龙, 韩重庆, 许清风, 等. 底面受火预应力混凝土空心板耐火性能的有限元分析[J]. 防灾减灾工程学报, 2016, 36(3): 478-485.CHEN Z L, HAN C Q, XU Q F, et al. Finite element analysis of PC hollow-core slab exposed to fire [J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(3): 478-485. (in Chinese)
    [24] 韩重庆, 许清风, 李梦南, 等. 受约束预应力混凝土空心板整浇楼面耐火极限试验研究[J]. 建筑结构学报, 2018, 39(5): 52-62.HAN C Q, XU Q F, LI M N, et al. Experimental research on fire endurance of PC hollow-core slab integrated floor with constraints [J]. Journal of Building Structures, 2018, 39(5): 52-62. (in Chinese)
    [25] 庞瑞, 梁书亭, 朱筱俊. 新型全预制装配式RC楼盖平面内力学特征研究[J]. 特种结构, 2010, 27(1): 30-35.PANG R, LIANG S T, ZHU X J. Studies on in-plane mechanical feature of new-type precast assembly RC diaphragms [J]. Special Structures, 2010, 27(1): 30-35. (in Chinese)
    [26] 李青宁, 葛磊, 韩春, 等. 新型装配式楼盖平面内刚度试验研究[J]. 建筑结构, 2016, 46(10): 50-55.LI Q N, GE L, HAN C, et al. Experimental study on in-plane rigidity of new-type prefabricated floor [J]. Building Structure, 2016, 46(10): 50-55. (in Chinese)
    [27] 李昊, 周威. 大跨装配式混凝土结构横隔板效应分析[J]. 哈尔滨工业大学学报, 2022, 54(4): 65-73.LI H, ZHOU W. Diaphragm effectiveness in large-span precast concrete structures [J]. Journal of Harbin Institute of Technology, 2022, 54(4): 65-73. (in Chinese)
    [28] 周绪红, 刘界鹏, 林旭川. 高层钢-混凝土混合结构体系抗震性能与设计方法[M]. 北京: 中国建筑工业出版社, 2021.ZHOU X H, LIU J P, LIN X C. Seismic performance and design method of high-rise steel-concrete mixed structure system [M]. Beijing: China Architecture & Building Press, 2021. (in Chinese)
    [29] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33-37.YANG P, LI Y M, LAI M. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33-37. (in Chinese)
    [30] 张连河. 钢筋混凝土框架结构超强系数分析[D]. 重庆: 重庆大学, 2009.ZHANG L H. Analysis on overstrength factors of reinforced concrete frame structures [D]. Chongqing: Chongqing University, 2009. (in Chinese)
    [31] RODRIGUEZ M E, RESTREPO J I, BLANDóN J J. Seismic design forces for rigid floor diaphragms in precast concrete building structures [J]. Journal of Structural Engineering, 2007, 133(11): 1604-1615.
    [32] PANAGIOTOU M, RESTREPO J I, CONTE J P. Shake-table test of a full-scale 7-story building slice. phase I: Rectangular wall [J]. Journal of Structural Engineering, 2011, 137(6): 691-704.
    [33] CHEN M, PANTOLI E, WANG X, et al. Full-scale structural and nonstructural building system performance during earthquakes part I-Specimen description, test protocol and structural response [J]. Earthquake Spectra, 2016, 32(2): 737-770.
    [34] CHOI H, EROCHKO J, CHRISTOPOULOS C, et al. Comparison of the seismic response of steel buildings incorporating self-centering energy-dissipative braces, buckling restrained braces and moment-resisting frames [R]. Toronto: University of Toronto, 2016.
    [35] 杨卓兴. 中美高地震风险区钢筋混凝土框架结构抗震规定及性能对比研究[D]. 重庆: 重庆大学, 2010.YANG Z X. The comparison of seismic provisions and performance for Chinese reinforced concrete moment frames with American in high seismic risk zone [D]. Chongqing: Chongqing University, 2010. (in Chinese)
    [36] 李剑. 中美抗震规范的地震作用计算与钢筋混凝土结构抗震措施的比较研究[D]. 北京: 中国建筑科学研究院, 2005.LI J. Comparative study on seismic analysis and design details of concrete structure in Chinese and American code [D]. Beijing: China Academy of Building Research, 2005. (in Chinese)
    [37] 扶长生, 刘春明, 李永双, 等. 高层建筑薄弱连接混凝土楼板应力分析及抗震设计[J]. 建筑结构, 2008, 38(3): 106-110, 37.FU C S, LIU C M, LI Y S, et al. Structural seismic design and analysis of linking RC slab in tall-building [J]. Building Structure, 2008, 38(3): 106-110, 37. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜凯旋,刘界鹏,李江,康少波,姜凯.预制装配式楼盖水平地震作用计算方法[J].土木与环境工程学报(中英文),2023,45(6):83-94. JIANG Kaixuan, LIU Jiepeng, LI Jiang, KANG Shaobo, JIANG Kai. Analysis method for horizontal seismic action of precast concrete floors[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2023,45(6):83-94.10.11835/j. issn.2096-6717.2023.029

复制
分享
文章指标
  • 点击次数:438
  • 下载次数: 653
  • HTML阅读次数: 90
  • 引用次数: 0
历史
  • 收稿日期:2022-11-10
  • 在线发布日期: 2023-11-13
文章二维码