基于多种群遗传算法的钢框架结构优化设计
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院;2.山地城镇建设与新技术教育部重点实验室,重庆 400045

作者简介:

周俊文(1991- ),男,博士,助理研究员,主要从事结构优化设计研究,E-mail:0zhoujunwen0@cqu.edu.cn
brief: ZHOU Junwen (1991- ), PhD, research assistant, main research interest: structural optimization design, E-mail: 0zhoujunwen0@cqu.edu.cn.

通讯作者:

刘界鹏(通信作者),男,教授,博士生导师,E-mail:liujp@cqu.edu.cn。

中图分类号:

TU318;TU392.1

基金项目:

国家自然科学基金(52130801);重庆市博士后研究项目(2021XM2039)


Optimization design of steel frame structure based on multi-population genetic algorithm
Author:
Affiliation:

1.School of Civil Engineering;2.Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 52130801); Chongqing Postdoctoral Science Foundation (No. 2021XM2039)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的基于力学分析软件的结构设计方法存在效率低下、依靠专家经验等局限性,采用智能算法能实现高效的结构自动优化设计。然而,由于随机搜索特征,优化结果和收敛性高度依赖于算法的参数设置,需要通过试算来确定其合理取值,该方法会造成优化效率低、计算量大等问题。引入多种群协作和信息共享机制来改善此类问题,并研究其在结构优化设计中的适用性。利用MSC.Marc软件建立钢框架结构有限元模型,采用底部剪力法将地震作用等效为水平荷载施加到结构上,搭建有限元软件与智能算法的自动优化过程,以结构的总体材料用量最低为目标,考虑了层间位移角、应力比、构件稳定性和宽厚比等多种约束条件,以遗传算法为基础,通过适应度尺度变换、基于方向的交叉算子、非均匀变异算子、自适应概率、精英保留策略、重复项替代机制、基于约束的策略对其进行改进,引入多种群思想,对比多种算法优化结果的差异。结果表明:基于多种群的遗传算法能有效改善优化结果对算法参数的依赖性,提高结构优化设计的效率。

    Abstract:

    The traditional structural design method based on mechanical analysis software has some limitations, such as low efficiency and expert experience reliance. The efficient automatic structural optimization design can be achieved by using intelligent algorithms. However, due to the random search feature, the optimization result and convergence are highly dependent on the parameter settings of the algorithm whose reasonable values need to be determined by the trial-and-error procedure. It results in inefficient optimization and substantial computational cost. Therefore, this paper introduces the multi-population collaboration and information sharing mechanism to improve such problems and its applicability in the structural optimization design is studied. The finite element model of a steel frame is built by MSC.Marc and the equivalent horizontal load from earthquake obtained by base shear method is exerted on the structure. The automatic optimization process is established based on finite element software and the intelligent algorithm with the aim of mininizing the total material cost of the structure. Multiple structural constraints are considered including the inter-story drift ratio, the stress ratio, and the stability and width-thickness ratio of the component. Several strategies are used to improve the performance of the genetic algorithm, such as the fitness scaling, the direction-based crossover operator, the non-uniform mutation operator, the adaptive probability, the elite strategy, the duplicate substitution mechanism, and the constraint-based strategy. Then the multi-population mechanism is introduced to such an algorithm. The results of different algorithms are compared with each other, which shows that the multi-population genetic algorithm can improve the dependence of optimization results on algorithm parameters and the efficiency of structural optimization design.

    参考文献
    [1] 李国强, 陈素文. 从汶川地震灾害看钢结构在地震区的应用[J]. 建筑钢结构进展, 2008, 10(4): 1-7, 62.LI G Q, CHEN S W. From the damage by Wenchuan earthquake to the application of steel building in seismic zone [J]. Progress in Steel Building Structures, 2008, 10(4): 1-7, 62. (in Chinese)
    [2] 孙得璋, 黄勇, 杨振宇, 等. 九寨沟7.0级地震中典型非结构构件震害特征[J]. 地震工程与工程振动, 2019, 39(1): 27-34.SUN D Z, HUANG Y, YANG Z Y, et al. Seismic damages of typical nonstructural components in the MS7.0 Jiuzhaigou earthquake [J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 27-34. (in Chinese)
    [3] 潘毅, 陈建, 包韵雷, 等. 长宁6.0级地震村镇建筑震害调查与分析[J]. 建筑结构学报, 2020, 41(Sup1): 297-306.PAN Y, CHEN J, BAO Y L, et al. Seismic damage investigation and analysis of rural buildings in MS6.0 Changning earthquake [J]. Journal of Building Structures, 2020, 41(Sup1): 297-306. (in Chinese)
    [4] 朱杰江, 顾元杰. 高地震烈度区某大高宽比住宅建筑结构优化设计[J]. 建筑结构, 2020, 50(11): 21-26.ZHU J J, GU Y J. Optimization design of a residential building with large height-width ratio in high seismic fortification intensity area [J]. Building Structure, 2020, 50(11): 21-26. (in Chinese)
    [5] 康庭豪, 王青琴, 张浩. 高层住宅混凝土结构优化设计分析[J]. 智能城市, 2020, 6(9): 32-33.KANG T H, WANG Q Q, ZHANG H. Optimization design analysis of high-rise residential concrete structure [J]. Intelligent City, 2020, 6(9): 32-33. (in Chinese)
    [6] PECHORSKAYA S A, GALISHNIKOVA V V, GEBRESLASSIE S B, et al. Structural analysis of high-rise building using ETABS and RSA software [J]. Structural Mechanics of Engineering Constructions and Buildings, 2021, 17(2): 133-139.
    [7] WANG F, SHI Q X, WANG P. Seismic behaviour of reinforced concrete frame structures with all steel assembled Q195 low yield buckling restrained braces [J]. Structures, 2021, 30: 756-773.
    [8] 秦佳俊, 谭平, 尚继英, 等. 模块化钢框架单元新型盒式连接节点及其设计方法[J]. 土木与环境工程学报(中英文), 2021, 43(3): 37-43.QIN J J, TAN P, SHANG J Y, et al. Design method on inovative box connections of modular steel frame units [J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 37-43. (in Chinese)
    [9] TALATAHARI S, GANDOMI A H, YUN G J. Optimum design of tower structures using Firefly Algorithm [J]. Structural Design of Tall and Special Buildings, 2014, 23(5): 350-361.
    [10] ALDWAIK M, ADELI H. Advances in optimization of highrise building structures [J]. Structural and Multidisciplinary Optimization, 2014, 50(6): 899-919.
    [11] 赵昕, 赵健哲, 马壮. 基于等增量敏感性的高层建筑结构反向约束优化设计方法研究[J]. 建筑结构学报, 2019, 40(11): 210-219.ZHAO X, ZHAO J Z, MA Z. Reversely constrained optimal design method for tall buildings based on constant incremental sensitivity [J]. Journal of Building Structures, 2019, 40(11): 210-219. (in Chinese)
    [12] LI Y, DUAN R B, LI Q S, et al. Wind-resistant optimal design of tall buildings based on improved genetic algorithm [J]. Structures, 2020, 27: 2182-2191.
    [13] DEGERTEKIN S O, HAYALIOGLU M S, GORGUN H. Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm [J]. Steel & Composite Structures, 2009, 9(6): 535-555.
    [14] GHOLIZADEH S, SHAHREZAEI A M. Optimal placement of steel plate shear walls for steel frames by bat algorithm [J]. The Structural Design of Tall and Special Buildings, 2015, 24(1): 1-18.
    [15] GHOLIZADEH S, POORHOSEINI H. Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm [J]. Structural and Multidisciplinary Optimization, 2016, 54(4): 1011-1029.
    [16] TALATAHARI S, GANDOMI A H, YANG X S, et al. Optimum design of frame structures using the Eagle Strategy with Differential Evolution [J]. Engineering Structures, 2015, 91: 16-25.
    [17] ?ARBA? S. Optimum structural design of spatial steel frames via biogeography-based optimization [J]. Neural Computing and Applications, 2017, 28(6): 1525-1539.
    [18] KAVEH A, KHODADADI N, AZAR B F, et al. Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections [J]. Engineering with Computers, 2021, 37(4): 2521-2541.
    [19] FARSHCHIN M, MANIAT M, CAMP C V, et al. School based optimization algorithm for design of steel frames [J]. Engineering Structures, 2018, 171: 326-335.
    [20] FARSHCHIN M, CAMP C V, MANIAT M. Optimal design of truss structures for size and shape with frequency constraints using a collaborative optimization strategy [J]. Expert Systems with Applications, 2016, 66: 203-218.
    [21] 骆清国, 赵耀, 桂勇, 等. 基于多种群协同进化免疫多目标优化算法的百叶窗优化研究[J]. 兵工学报, 2019, 40(4): 689-696.LUO Q G, ZHAO Y, GUI Y, et al. Research on optimization of louvered fin with hybrid multi-objective optimizations based on EDA and AIS [J]. Acta Armamentarii, 2019, 40(4): 689-696. (in Chinese)
    [22] 张天佳, 杨永胜. 基于并行结构的多种群粒子群优化算法[J]. 传感器与微系统, 2020, 39(9): 119-121.ZHANG T J, YANG Y S. Multi-swarm PSO algorithm based on parallel structure [J]. Transducer and Microsystem Technologies, 2020, 39(9): 119-121. (in Chinese)
    [23] 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.Code for sesmic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [24] 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国计划出版社, 2018.Standard for design of steel structures: GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [25] 王小平, 曹立明. 遗传算法: 理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.WANG X P, CAO L M. Genetic algorithm: Theory, application and software implementation [M]. Xi,an: Xi,an Jiaotong University Press, 2002. (in Chinese)
    [26] 王吉权, 程志文, 张攀利, 等. 求解有约束优化问题的实数遗传算法改进研究[J]. 控制与决策, 2019, 34(5): 937-946.WANG J Q, CHENG Z W, ZHANG P L, et al. Research on improvement of real-coded genetic algorithm for solving constrained optimization problems [J]. Control and Decision, 2019, 34(5): 937-946. (in Chinese)
    [27] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999.ZHOU M, SUN S D. Genetic algorithms: theory and applications[M]. Beijing: National Defense Industry Press, 1999. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周俊文,刘界鹏.基于多种群遗传算法的钢框架结构优化设计[J].土木与环境工程学报(中英文),2024,46(1):71-81. ZHOU Junwen, LIU Jiepeng. Optimization design of steel frame structure based on multi-population genetic algorithm[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):71-81.10.11835/j. issn.2096-6717.2022.071

复制
分享
文章指标
  • 点击次数:788
  • 下载次数: 748
  • HTML阅读次数: 129
  • 引用次数: 0
历史
  • 收稿日期:2022-01-30
  • 在线发布日期: 2023-12-05
文章二维码