基于卷积神经网络的预制叠合板多目标智能化检测方法
CSTR:
作者:
作者单位:

1.重庆大学 山地城镇建设与新技术教育部重点实验室;土木工程学院,重庆 400045;2.中机中联工程有限公司,重庆 400050

作者简介:

姚刚(1963- ),男,教授,博士生导师,主要从事土木工程施工研究,E-mail:yaocqu@vip.sina.com。
brief: YAO Gang (1963- ), professor, doctorial supervisor, main research interest: building construction and information technology, E-mail: yaocqu@vip.sina.com.

通讯作者:

杨阳(通信作者),女,博士,E-mail:yy20052710@163.com。

中图分类号:

TU741.2

基金项目:

国家重点研发计划(2019YFD1101005)


Multi-target intelligent detection method of prefabricated laminated board based on convolutional neural network
Author:
Affiliation:

1.Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education; School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.China Machinery China United Engineering Co., Ltd., Chongqing 400050, P. R. China

Fund Project:

National Key R & D Program of China(No. 2019YFD1101005)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在生产过程中,预制构件尺寸不合格问题将导致其在施工现场无法顺利安装,从而影响工期。为推进预制构件智能化生产的进程,以预制叠合板为例,基于卷积神经网络研究生产过程中的智能检测方法,在生产流水线上设计并安装图像采集系统,建立预制叠合板尺寸检测数据集。通过YOLOv5算法实现对混凝土底板、预埋PVC线盒及外伸钢筋的识别,并以固定磁盒作为基准参照物进行尺寸检测误差分析,实现混凝土底板尺寸、预埋PVC线盒坐标的检测,在降低训练数据集参数规模的工况下保持较高的识别精度。结果表明:该方法可以有效检测预制叠合板的底板数量和尺寸、预埋PVC线盒数量和坐标,并实现弯折方向不合格的外伸钢筋检测,并能降低人工成本,提高检测精度,加快检测速度,提高预制叠合板的出厂质量。

    Abstract:

    The unqualified size of prefabricated component in the production process will lead to the failure of the installation on the construction site, and affect the construction period. In order to promote the process of intelligent production of prefabricated components. Based on a convolutional neural network, the prefabricated laminated board is used as an example to study the intelligent detection method of the production process. Design and install an image acquisition system on the production line, establish a prefabricated laminated board detection data set, and use the YOLOv5 algorithm to detect the concrete plate, the embedded PVC junction box and the overhanging steel bar. The fixed magnetic box is used as the benchmark to analyze the detection error of the dimension of the concrete plate and the coordinate of the embedded PVC junction box, and maintains a high recognition accuracy with a smaller parameter scale of the training data set. The result shows that the method can effectively detect the number and dimension of the concrete plate, the number and coordinate of the embedded PVC junction box, and detect the overhanging steel bar of unqualified bending direction. The method can reduce labor costs, improve detection accuracy, speed up detection process, and improve the delivery quality of prefabricated laminated board.

    参考文献
    [1] 中华人民共和国住房和城乡建设部. 住房和城乡建设部标准定额司关于2020年度全国装配式建筑发展情况的通报[EB/OL]. (2021-03-11)[2022-04-18]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/202103/20210312_249438.html.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Circular of the Standard and Quota Division of the Ministry of Housing and Urban-Rural Development on the Development of National Prefabricated Buildings in 2020 [EB/OL]. (2021-03-11)[2022-04-18].https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/202103/20210312_249438.html.(in Chinese)
    [2] 徐照, 占鑫奎, 张星. BIM技术在装配式建筑预制构件生产阶段的应用[J]. 图学学报, 2018, 39(6): 1148-1155.XU Z, ZHAN X K, ZHANG X. Application of BIM technology in the manufacturing stage of precast elements of prefabricated construction [J]. Journal of Graphics, 2018, 39(6): 1148-1155. (in Chinese)
    [3] 周垚, 李希胜. 基于BIM的预制构件生产质量控制[J]. 建设科技, 2019(21): 61-64, 75.ZHOU Y, LI X S. Roduction quality control of prefabricated components based on BIM [J]. Construction Science and Technology, 2019(21): 61-64, 75. (in Chinese)
    [4] CHEN Y, ZHANG Q, FENG J, et al. Experimental study on shear resistance of precast RC shear walls with novel bundled connections [J]. Journal of Earthquake and Tsunami, 2019, 13(3): 1940002.
    [5] GONG Y, FANG J, CHEN X H. Implementation of lean construction under the new-type building industrialization background in China [C]//International Conference on Construction and Real Estate Management 2016. September 29-October 1, 2016, Edmonton, Canada. Reston, VA, USA: American Society of Civil Engineers, 2016: 169-178.
    [6] 黄炜, 罗斌, 李斌, 等. 不同构造形式绿色混凝土叠合板受弯性能试验[J]. 湖南大学学报(自然科学版), 2019, 46(7): 35-44.HUANG W, LUO B, LI B, et al. Experiment on flexural behavior of green concrete composite slab with different structural forms [J]. Journal of Hunan University (Natural Sciences), 2019, 46(7): 35-44. (in Chinese)
    [7] YAO G, WANG M P, YANG Y, et al. Development and analysis of prefabricated concrete buildings in Chengdu, China [J]. International Journal of Sustainable Development and Planning, 2020, 15(3): 403-411.
    [8] 赵秋萍. 装配式结构施工深化设计要点[J]. 施工技术, 2017, 46(4): 21-24.ZHAO Q P. Key points of precast structure construction deep design [J]. Construction Technology, 2017, 46(4): 21-24. (in Chinese)
    [9] LIU J D, ZHANG Q L, WU J, et al. Dimensional accuracy and structural performance assessment of spatial structure components using 3D laser scanning [J]. Automation in Construction, 2018, 96: 324-336.
    [10] KIM M K, SOHN H, CHANG C C. Localization and quantification of concrete spalling defects using terrestrial laser scanning [J]. Journal of Computing in Civil Engineering, 2015, 29(6): 04014086.
    [11] SUN M S, XU A Q, LIU J. Line shape monitoring of longspan concrete-filled steel tube arches based on three-dimensional laser scanning [J]. International Journal of Robotics and Automation, 2021, 36(10): 1-13.
    [12] BARAZZETTI L, PREVITALI M, RONCORONI F. The use of terrestrial laser scanning techniques to evaluate industrial masonry chimney verticality [J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 42(2): 173-178.
    [13] 杨阳, 李青泽, 姚刚. 预制叠合板构件智能化识别与检测方法[J]. 土木与环境工程学报(中英文), 2022, 44(1): 87-93.YANG Y, LI Q Z, YAO G. Intelligent identification and detection method of prefabricated laminated slab [J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 87-93. (in Chinese)
    [14] 鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11.BAO Y Q, LI H. Artificial intelligence for civil engineering [J]. China Civil Engineering Journal, 2019, 52(5): 1-11. (in Chinese)
    [15] AMEZQUITA-SANCHEZ J, VALTIERRA-RODRI-GUEZ M, ADELI H. Machine learning in structural engineering [J]. Scientia Iranica, 2020, 27(6): 2645-2656.
    [16] 魏伏佳. 基于卷积神经网络的清水混凝土表面气泡检测与评价[D]. 重庆: 重庆大学, 2020.WEI F J. Bughole detection and evaluation of fairfaced concrete surface based on convolutional neural network [D]. Chongqing: Chongqing University, 2020. (in Chinese)
    [17] 熊朝阳, 王婷. 基于卷积神经网络的建筑构件图像识别[J]. 计算机科学, 2021, 48(Sup 1): 51-56.XIONG Z Y, WANG T. Image recognition for building components based on convolutional neural network [J]. Computer Science, 2021, 48(Sup 1): 51-56. (in Chinese)
    [18] 李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9): 1727-1742.LI L F, MA W F, LI L, et al. Research on detection algorithm for bridge cracks based on deep learning [J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. (in Chinese)
    [19] 赵珊珊, 何宁. 基于卷积神经网络的路面裂缝检测[J]. 传感器与微系统, 2017, 36(11): 135-138.ZHAO S S, HE N. Road surface crack detection based on CNN [J]. Transducer and Microsystem Technologies, 2017, 36(11): 135-138. (in Chinese)
    [20] WANG J J, LIU Y F, NIE X, et al. Deep convolutional neural networks for semantic segmentation of cracks [J]. Structural Control and Health Monitoring, 2022, 29(1): 1-18.
    [21] SUN Y J, YANG Y, YAO G, et al. Autonomous crack and bughole detection for concrete surface image based on deep learning [J]. IEEE Access, 2021, 9: 85709-85720.
    [22] FAN W Y, CHEN Y, LI J Q, et al. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications [J]. Structures, 2021, 33: 3954-3963.
    [23] 黄健, 张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17): 12-23.HUANG J, ZHANG G. Survey of object detection algorithms for deep convolutional neural networks [J]. Computer Engineering and Applications, 2020, 56(17): 12-23. (in Chinese)
    [24] 王旭辰, 韩煜祺, 唐林波, 等. 基于深度学习的无人机载平台多目标检测和跟踪算法研究[J]. 信号处理, 2022, 38(1): 157-163.WANG X C, HAN Y Q, TANG L B, et al. Multi target detection and tracking algorithm for UAV platform based on deep learning [J]. Journal of Signal Processing, 2022, 38(1): 157-163. (in Chinese)
    [25] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning [C]//CCEAI 2021: Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. 2021: 132-135.
    [26] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014: 580-587.
    [27] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
    [28] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788.
    [29] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [EB/OL]. 2015: arXiv: 1512.02325. https://arxiv.org/abs/1512.02325
    [30] 谈世磊, 别雄波, 卢功林, 等. 基于YOLOv5网络模型的人员口罩佩戴实时检测[J]. 激光杂志, 2021, 42(2): 147-150.TAN S L, BIE X B, LU G L, et al. Real-time detection for mask-wearing of personnel based on YOLOv5 network model [J]. Laser Journal, 2021, 42(2): 147-150. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚刚,廖港,杨阳,李青泽,魏伏佳.基于卷积神经网络的预制叠合板多目标智能化检测方法[J].土木与环境工程学报(中英文),2024,46(1):93-101. YAO Gang, LIAO Gang, YANG Yang, LI Qingze, WEI Fujia. Multi-target intelligent detection method of prefabricated laminated board based on convolutional neural network[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):93-101.10.11835/j. issn.2096-6717.2022.026

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-08
  • 在线发布日期: 2023-12-05
文章二维码