基于数字孪生和深度学习的结构损伤识别
CSTR:
作者:
作者单位:

同济大学 土木工程学院,上海 200092

作者简介:

唐和生(1973- ),男,博士,研究员,博士生导师,主要从事AI科学计算交叉研究,E-mail:thstj@tongji.edu.cn。
brief: TANG Hesheng (1973- ), PhD, researcher, doctorial supervisor, main research interest: AI scientific computing intersection, E-mail: thstj@tongji.edu.cn.

通讯作者:

中图分类号:

TU317;TP183

基金项目:

上海市级科技重大专项(2021SHZDZX0100);土木工程I类高峰学科建设经费(2022-3-YB-07)


Structural damage identification based on digital twin and deep learning
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China

Fund Project:

Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100); Top Discipline Plan of Shanghai Universities-Class I (No. 2022-3-YB-07)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真模型和在线监测数据构建结构的数字孪生,以获得不同损伤工况下结构动力响应的“大数据”;为了摆脱对外激励信息的依赖,应用经验模态分解法和传递率函数对得到的数据进行预处理;将预处理后的固有模态传递率函数数据作为深度学习的输入进行训练,实现结构的损伤识别。为验证方法的有效性,对实际结构未经训练的监测数据进行分析,结果表明,该方法泛化能力良好,能够有效识别结构损伤状况。通过数字孪生技术解决了传统方法数据匮乏的问题,不需要任何地震信息,利用固有模态传递率函数数据训练的深度神经网络仍能保持较高的损伤识别准确率,二者结合可以使工程结构健康监测更为主动、可靠、高效。

    Abstract:

    The time span of the civil engineering structural damage state usually accounts for a small part of the total life cycle. In order to solve the problem that traditional data-driven structural damage identification methods lack enough damage state data for training, a structural damage identification method based on digital twins and deep learning is proposed in this paper for practical application. Firstly, the digital twin is constructed by using the numerical simulation model and online monitoring data to obtain the “big data” of the structural dynamic response under different damage conditions. Secondly, to get rid of the dependence on the external excitation, the empirical mode decomposition method and transmissibility function are used to preprocess the obtained data. Then, the damage identification is realized by using deep learning. To verify the effectiveness of this method, untrained monitoring data of structures are analyzed. The results show that the method has good generalization ability and can identify the structural damage condition effectively. The problem of data hunger is solved by digital twin technology, and the deep neural network trained by the intrinsic mode vibration transmissibility function data sets can still maintain a high accuracy of damage identification without any seismic information. The combination of the two methods can make structural health monitoring more active, reliable and efficient.

    参考文献
    相似文献
    引证文献
引用本文

唐和生,王泽宇,陈嘉缘.基于数字孪生和深度学习的结构损伤识别[J].土木与环境工程学报(中英文),2024,46(1):110-121. TANG Hesheng, WANG Zeyu, CHEN Jiayuan. Structural damage identification based on digital twin and deep learning[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):110-121.10.11835/j. issn.2096-6717.2022.130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-05
  • 出版日期:
文章二维码