基于数字孪生和深度学习的结构损伤识别
CSTR:
作者:
作者单位:

同济大学 土木工程学院,上海 200092

作者简介:

唐和生(1973- ),男,博士,研究员,博士生导师,主要从事AI科学计算交叉研究,E-mail:thstj@tongji.edu.cn。
brief: TANG Hesheng (1973- ), PhD, researcher, doctorial supervisor, main research interest: AI scientific computing intersection, E-mail: thstj@tongji.edu.cn.

中图分类号:

TU317;TP183

基金项目:

上海市级科技重大专项(2021SHZDZX0100);土木工程I类高峰学科建设经费(2022-3-YB-07)


Structural damage identification based on digital twin and deep learning
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China

Fund Project:

Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100); Top Discipline Plan of Shanghai Universities-Class I (No. 2022-3-YB-07)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真模型和在线监测数据构建结构的数字孪生,以获得不同损伤工况下结构动力响应的“大数据”;为了摆脱对外激励信息的依赖,应用经验模态分解法和传递率函数对得到的数据进行预处理;将预处理后的固有模态传递率函数数据作为深度学习的输入进行训练,实现结构的损伤识别。为验证方法的有效性,对实际结构未经训练的监测数据进行分析,结果表明,该方法泛化能力良好,能够有效识别结构损伤状况。通过数字孪生技术解决了传统方法数据匮乏的问题,不需要任何地震信息,利用固有模态传递率函数数据训练的深度神经网络仍能保持较高的损伤识别准确率,二者结合可以使工程结构健康监测更为主动、可靠、高效。

    Abstract:

    The time span of the civil engineering structural damage state usually accounts for a small part of the total life cycle. In order to solve the problem that traditional data-driven structural damage identification methods lack enough damage state data for training, a structural damage identification method based on digital twins and deep learning is proposed in this paper for practical application. Firstly, the digital twin is constructed by using the numerical simulation model and online monitoring data to obtain the “big data” of the structural dynamic response under different damage conditions. Secondly, to get rid of the dependence on the external excitation, the empirical mode decomposition method and transmissibility function are used to preprocess the obtained data. Then, the damage identification is realized by using deep learning. To verify the effectiveness of this method, untrained monitoring data of structures are analyzed. The results show that the method has good generalization ability and can identify the structural damage condition effectively. The problem of data hunger is solved by digital twin technology, and the deep neural network trained by the intrinsic mode vibration transmissibility function data sets can still maintain a high accuracy of damage identification without any seismic information. The combination of the two methods can make structural health monitoring more active, reliable and efficient.

    参考文献
    [1] 李宏男, 李东升. 土木工程结构安全性评估、健康监测及诊断述评[J]. 地震工程与工程振动, 2002, 22(3): 82-90.LI H N, LI D S. Safety assessment, health monitoring and damage diagnosis for structures in civil engineering [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(3): 82-90. (in Chinese)
    [2] 朱宏平, 余璟, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(2): 1-11, 17.ZHU H P, YU J, ZHANG J B. A summary review and advantages of vibration-based damage identification methods in structural health monitoring [J]. Engineering Mechanics, 2011, 28(2): 1-11, 17. (in Chinese)
    [3] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring [J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
    [4] 邵会辰. 基于改进均匀设计表的损伤识别方法研究及应用[D]. 山东青岛: 青岛理工大学, 2020.SHAO H C. Research and application of damage identification method based on improved uniform design table [D]. Qingdao, Shandong: Qingdao Tehcnology University, 2020. (in Chinese)
    [5] 骆勇鹏, 王林堃, 郭旭, 等. 利用单传感器数据基于GAF-CNN的结构损伤识别[J]. 振动 测试与诊断, 2022, 42(1): 169-176, 202.LUO Y P, WANG L K, GUO X, et al. Structural damage identification using single sensor data based on GAF-CNN [J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(1): 169-176, 202. (in Chinese)
    [6] DANG H V, RAZA M, NGUYEN T V, et al. Deep learning-based detection of structural damage using time-series data [J]. Structure and Infrastructure Engineering, 2021, 17(11): 1474-1493.
    [7] BOOYSE W, WILKE D N, HEYNS S. Deep digital twins for detection, diagnostics and prognostics [J]. Mechanical Systems and Signal Processing, 2020, 140: 106612.
    [8] WAGG D J, WORDEN K, BARTHORPE R J, et al. Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B Mechanical Engineering, 2020, 6(3): 030901.
    [9] RITTO T G, ROCHINHA F A. Digital twin, physics-based model, and machine learning applied to damage detection in structures [J]. Mechanical Systems and Signal Processing, 2021, 155: 107614.
    [10] KARVE P M, GUO Y, KAPUSUZOGLU B, et al. Digital twin approach for damage-tolerant mission planning under uncertainty [J]. Engineering Fracture Mechanics, 2020, 225: 106766.
    [11] KAPTEYN M G, KNEZEVIC D J, HUYNH D B P, et al. Data-driven physics-based digital twins via a library of component-based reduced-order models [J]. International Journal for Numerical Methods in Engineering, 2022, 123(13): 2986-3003.
    [12] GARDNER P, BORGO MDAL, RUFFINI V, et al. Towards the development of an operational digital twin [J]. Vibration, 2020, 3(3): 235-265.
    [13] GRIEVES M W. Product lifecycle management: The new paradigm for enterprises [J]. International Journal of Product Development, 2005, 2(1/2): 71.
    [14] XU Y, SUN Y M, LIU X L, et al. A digital-twin-assisted fault diagnosis using deep transfer learning [J]. IEEE Access, 7: 19990-19999.
    [15] 张胜文, 杨凌翮, 程德俊. 数字孪生驱动的离心泵机组故障诊断方法研究[J]. 计算机集成制造系统, 2023, 29(5): 1462-1470.ZHANG S W, YANG L H, CHENG D J. Fault diagnosis method of centrifugal pump driven by digital twin [J]. Computer Integrated Manufacturing Systems, 2023, 29(5): 1462-1470.(in Chinese)
    [16] JONES D, SNIDER C, NASSEHI A, et al. Characterising the digital twin: A systematic literature review [J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29: 36-52.
    [17] 杨朋超, 薛松涛, 谢丽宇. 消能减震建筑结构模态参数识别的贝叶斯方法[J]. 振动工程学报, 2021, 34(4): 671-679.YANG P C, XUE S T, XIE L Y. Bayesian modal parameters identification of passively controlled building structures [J]. Journal of Vibration Engineering, 2021, 34(4): 671-679. (in Chinese)
    [18] 杨朋超, 薛松涛, 谢丽宇. 结构动力模型的改进直接修正方法及工程应用[J]. 建筑结构学报, 2021, 42(3): 34-40.YANG P C, XUE S T, XIE L Y. An improved direct method for dynamic model updating and its practical engineering applications [J]. Journal of Building Structures, 2021, 42(3): 34-40. (in Chinese)
    [19] 顾建祖, 郝文峰, 骆英, 等. 基于固有模态函数振动传递率的结构损伤识别[J]. 建筑科学与工程学报, 2011, 28(1): 27-32.GU J Z, HAO W F, LUO Y, et al. Structural damage identification based on intrinsic mode function vibration transmissibility [J]. Journal of Architecture and Civil Engineering, 2011, 28(1): 27-32. (in Chinese)
    [20] HUANG N, SHEN Z, LONG S, et al. The empirical model decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
    引证文献
引用本文

唐和生,王泽宇,陈嘉缘.基于数字孪生和深度学习的结构损伤识别[J].土木与环境工程学报(中英文),2024,46(1):110-121. TANG Hesheng, WANG Zeyu, CHEN Jiayuan. Structural damage identification based on digital twin and deep learning[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):110-121.10.11835/j. issn.2096-6717.2022.130

复制
分享
文章指标
  • 点击次数:915
  • 下载次数: 1297
  • HTML阅读次数: 143
  • 引用次数: 0
历史
  • 收稿日期:2022-04-27
  • 在线发布日期: 2023-12-05
文章二维码