基于深度学习的钝体断面外形气动性能高效预测方法
CSTR:
作者:
作者单位:

重庆大学 土木工程学院,重庆 400045

作者简介:

李少鹏(1986- ),男,博士,副教授,主要从事大跨度桥梁结构风特性研究,E-mail:lisp0314@cqu.edu.cn。
brief: LI Shaopeng (1986- ), PhD, associate professor, main research interest: wind characteristics of long-span bridge structure, E-mail: lisp0314@cqu.edu.cn.

通讯作者:

李珂(通信作者),男,博士,副教授, E-mail:keli-bridge@cqu.edu.cn。

中图分类号:

TU318;U441

基金项目:

国家自然科学基金(51978108);重庆市自然科学基金(cstc2020jcyj-msxmX0773)


An efficient deep learning prediction method for aerodynamic performance based on the shape of the main beam
Author:
Affiliation:

School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51978108); Natural Science Foundation of Chongqing (No. cstc2020jcyj-msxmX0773)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于气动性能,钝体断面的气动外形非常重要,采用传统风洞试验及CFD模拟计算得到钝体断面气动性能需消耗大量时间,大大影响钝体断面气动外形的气动性能评估效率。通过卷积神经网络深度学习技术实现对气动性能的快速预测,深度学习模型训练完成后,输入形状信息和与形状相关的流场信息,即可输出不同几何形状下的阻力系数,进而得到钝体断面的气动性能。为寻找性能最优的深度学习模型,通过综合判定误差和参数量大小对卷积神经网络结构的深度和宽度进行优化。对深度学习模型输出阻力系数与CFD计算结果进行对比发现,误差符合预期要求,并且相较于传统方法,基于深度学习网络的预测所需时间达到数量级的提升,未来可作为钝体断面气动外形优化的关键方法。

    Abstract:

    The aerodynamic shape of the bluff body section is very important to the aerodynamic performance. However, it takes a lot of time to obtain the aerodynamic performance of the bluff body section using traditional wind tunnel tests and CFD simulation calculations, which greatly affects the aerodynamic performance evaluation efficiency of the bluff body section , s aerodynamic shape. This paper proposes to use the deep learning technology of convolutional neural networks to realize the rapid prediction of aerodynamic performance. After the deep learning model is trained, the shape information and the shape-related flow field information can be input to output the drag coefficients under different geometric shapes, then the aerodynamic performance of the bluff body section. However to find the best deep learning model, this paper optimizes the depth and width of the convolutional neural network structure through comprehensive judgment error and time performance. The output resistance coefficient of the deep learning model is compared with the CFD calculation results. It is found that the error meets the expected requirements, and the prediction time based on the deep learning network is an order of magnitude improvement compared with the calculation time required by the traditional method. It can be used as the bluff body section aerodynamic shape optimization in the future.

    参考文献
    相似文献
    引证文献
引用本文

李少鹏,李海,李珂.基于深度学习的钝体断面外形气动性能高效预测方法[J].土木与环境工程学报(中英文),2024,46(1):122-129. LI Shaopeng, LI Hai, LI Ke. An efficient deep learning prediction method for aerodynamic performance based on the shape of the main beam[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):122-129.10.11835/j. issn.2096-6717.2022.025

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-05
  • 出版日期:
文章二维码