基于M-Unet的混凝土裂缝实时分割算法
CSTR:
作者:
作者单位:

1.西南石油大学 土木工程与测绘学院,成都 610500;2.西南交通大学 土木工程学院,成都 610031

作者简介:

孟庆成(1980- ),男,博士,主要从事桥梁结构健康监测与损伤识别研究,E-mail:214400395@qq.com。
brief: MENG Qingcheng (1980- ), PhD, main research interests: bridge structure health monitoring and damage identification, E-mail: 214400395@qq.com.

通讯作者:

中图分类号:

TU755.7

基金项目:

国家自然科学基金(52078442);四川省科技计划(2021YJ0038)


Real-time segmentation algorithm of concrete cracks based on M-Unet
Author:
Affiliation:

1.School of Civil Engineering and Geomatics, Southwest Petroleum University,Chengdu 610500;2.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031

Fund Project:

National Natural Science Foundation of China (No. 52078442): Science and Technology Program of Sichuan Province (No. 2021YJ0038)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对主流深度学习裂缝分割算法消耗大量计算资源、传统图像处理方法检测精度低、丢失裂缝特征等问题,为了实现对混凝土裂缝的实时检测和在像素级水平上分割裂缝,提出一种基于轻量级卷积神经络M-Unet的裂缝语义分割模型,首先对MobileNet_V2轻量网络进行改进,修剪其网络结构并优化激活函数,再用改进的MobileNet_V2替换U-Net参数量巨大的编码器部分,以实现模型的轻量化并提升裂缝的分割效果。构建包含5 160张裂缝图像的SegCracks数据集对提出方法进行验证,试验结果表明:优化后的M-Unet裂缝分割效果优于U-Net、FCN8和SegNet等主流分割网络和传统图像处理技术,获得的IoU_Score为96.10%,F1_Score为97.99%。与改进前U-Net相比,M-Unet权重文件大小减少了7%,迭代一轮时间和预测时间分别缩短了63.3%和68.6%,IoU_Score和F1_Score分别提升了5.79%和3.14%,并且在不同开源数据集上的交叉验证效果良好。表明提出的网络具有精度高、鲁棒性好和泛化能力强等优点。

    Abstract:

    Mainstream deep learning algorithm for crack segmentation consumes a lot of computing resources while the traditional image processing methods are of low detection accuracy and lost crack features. In order to realize the real-time detection of concrete cracks and the segmentation of cracks at the pixel level, a crack semantic segmentation model based on lightweight convolutional neural network M-Unet is proposed. Firstly, the MobileNet_V2 lightweight network is improved, its network structure is trimmed and the activation function is optimized, and then the encoder part with huge parameters of U-Net is replaced by the improved MobileNet_V2 to realize the lightweight of the model and improve the segmentation effect of cracks. The SegCracks data set containing 5 160 crack images is constructed to verify the proposed method. The experimental results show that the crack segmentation effect of the optimized M-Unet is better than the mainstream segmentation networks of U-Net, FCN8 and SegNet and the traditional image processing techniques, the obtained IoU_Score is 96.10%, F1_Score is 97.99%. Compared with the original U-Net, the weight file size M-Unet is reduced by 7 %, the iteration time and prediction time are reduced by 63.3% and 68.6% respectively, and the IoU_Score and F1_Score are increased by 5.79 % and 3.14 % respectively. The cross validation results on different open source data sets are good, which shows that the proposed network has the advantages of high accuracy, good robustness and strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

孟庆成,李明健,万达,胡垒,吴浩杰,齐欣.基于M-Unet的混凝土裂缝实时分割算法[J].土木与环境工程学报(中英文),2024,46(1):215-222. MENG Qingcheng, LI Mingjian, WAN Da, HU Lei, Wu Haojie, QI xin. Real-time segmentation algorithm of concrete cracks based on M-Unet[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):215-222.10.11835/j. issn.2096-6717.2022.079

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-05
  • 出版日期:
文章二维码