基于航拍图像与改进U-Net的建筑外墙裂缝检测方法
CSTR:
作者:
作者单位:

1.长沙理工大学 土木工程学院,长沙 410114;2.中国建筑第五工程局有限公司,长沙 410007

作者简介:

刘少华(1999- ),男,主要从事计算机视觉与健康监测研究,E-mail:liushaohua2020@163.com。
brief: LIU Shaohua (1999- ), main research interests: computer vision and health monitoring, E-mail: liushaohua2020@163.com.

通讯作者:

中图分类号:

TU17

基金项目:

湖南省自然科学基金(2021JJ30716);湖南省高新技术产业科技创新引领计划(2020KG2026);长沙理工大学土木工程优势特色重点学科创新性项目(16ZDXK05)


Building exterior wall crack detection based on aerial images and improved U-Net
Author:
Affiliation:

1.School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China;2.China Construction Fifth Engineering Bureau Co., Ltd, Changsha 410007, P. R. China

Fund Project:

Natural Science Foundation of Hunan Province (No. 2021JJ30716); High-Tech Industry Science and Technology Innovation Leading Plan Project of Hunan Province (No. 2020KG2026); Civil Engineering Advantage Characteristic Key Discipline Innovation Project of Changsha University of Science and Technology (No. 16ZDXK05)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对建筑外墙裂缝人工检测方法检测效率低、检测效果和安全性差的问题,提出基于航拍图像与计算机视觉的裂缝检测方法。使用无人机绕建筑物航拍采集裂缝图像,并构建裂缝数据集;优化U-Net模型以解决细长裂缝分割不连续、复杂背景下裂缝漏检及背景误检的问题。将模型编码网络替换为预训练的ResNet50以提升模型特征表达能力;添加改进的多孔空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,获取多尺度上下文信息;采用改进的损失函数处理裂缝图像正负样本分布极度不均的问题。结果表明:改进的U-Net模型解决了原模型存在的问题,IoU指标和F1_score分别提升了3.53%、4.18%;与经典分割模型相比,改进模型的裂缝分割性能最优。与人工检测方法相比,所提方法可以安全、高效且准确地进行建筑外墙裂缝检测。

    Abstract:

    Aiming at the problems of low efficiency, unsatisfactory detection effect and poor safety of manual detection methods for building exterior wall cracks, a crack detection method based on aerial images and computer vision was proposed. Firstly, the Unmanned Aerial Vehicle (UAV) was used to collect the crack images through aerial photography around the buildings, and a crack dataset was constructed. Secondly, the U-Net was optimized to solve the problems of discontinuous segmentation of slender cracks as well as the missed and false detection under complex backgrounds. The encoder was replaced with pre-trained ResNet50 to improve the feature expression ability of the model. An improved Atrous Spatial Pyramid Pooling (ASPP) module was added to obtain multi-scale context information. The improved loss function was used to deal with the problem of extremely uneven distribution of positive and negative samples in crack images. Experiments show that the improved U-Net model solved the problems existing in the original model; the IoU and F1_score were increased by 3.53% and 4.18%, respectively. Compared with the classical segmentation model, the improved model has the best crack segmentation performance. Compared with manual detection methods, it can efficiently, accurately, and safely detect building exterior wall cracks.

    参考文献
    相似文献
    引证文献
引用本文

刘少华,任宜春,郑智雄,牛孜飏.基于航拍图像与改进U-Net的建筑外墙裂缝检测方法[J].土木与环境工程学报(中英文),2024,46(1):223-231. LIU Shaohua, REN Yichun, ZHENG Zhixiong, NIU Ziyang. Building exterior wall crack detection based on aerial images and improved U-Net[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(1):223-231.10.11835/j. issn.2096-6717.2022.145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-05
  • 出版日期:
文章二维码