薄层水流冲刷条件下斜坡土体的临界起动
CSTR:
作者:
作者单位:

三峡库区地质灾害教育部重点实验室(三峡大学),湖北 宜昌 443002

作者简介:

王力(1988- ),男,博士(后),副教授,主要从事地质灾害预测评价,E-mail:wangli_ctgu@126.com。
WANG Li (1988- ), postdoctor, associate professor, main research interest: prediction and evaluation of geological hazards, E-mail: wangli_ctgu@126.com.

通讯作者:

占清华(通信作者),女,博士,E-mail:546068523@qq.com。

中图分类号:

P512.23

基金项目:

国家自然科学基金(U21A2031);中国博士后科学基金(2021M701969)


Critical incipient motion of slope soil under thin layer flow scouring
Author:
Affiliation:

Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, P. R. China

Fund Project:

National Natural Science Foundation of China (No. U21A2031); China Postdoctoral Science Foundation (No. 2021M701969)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    斜坡土体侵蚀是丘陵地区和水库岸坡普遍存在的灾害现象,其主要动力因素是降雨或者波浪上爬产生的薄层水流对土体产生的冲刷剪切作用。为探索水流冲刷作用下的斜坡土体临界起动条件,采用自主研发的冲刷起动试验装置,开展斜坡土体的冲刷起动试验和理论研究。通过颗粒染色和高倍数电子显微等技术手段观测无黏性土颗粒的起动现象,确定了无黏性岸坡土体的起动模式与水流流速的相互关系;探索了不同干密度、不同黏粒含量及不同坡度与黏土斜坡临界起动流速的相互关系,土体的黏粒含量、干密度及坡度对黏性土体的起动流速影响较大,与干密度和土体坡度相比,黏粒含量对黏土斜坡的起动流速影响更为明显。验证了无黏性岸坡土体的临界起动方程,其中滚动起动流速方程具有较强的可靠性;基于黏土的起动模式构建了黏土斜坡的起动力学平衡方程,获得了黏土斜坡半经验半理论的起动流速方程,用试验结果求解了起动流速方程的相关参数,最终确定的起动流速公式与试验结果拟合度较好,同时验证了起动流速公式的可靠性。

    Abstract:

    Slope soil erosion is common in hilly regions and reservoir bank slopes, as the primary driving force is brought by the thin overland water flow caused by rainfall or wave run-up, which results in the shear force and subsequently the incipient motion of soil. In order to explore the incipient motion conditions of slope soil under waterflow scouring, the incipient motion test and theoretical research of slope soil were carried out via self-developed testing device. The incipient motion phenomenon of cohesionless soil particles was observed by particle staining and high magnification electron microscopy, and the relationship between incipient motion mode of cohesionless bank slope soil and flow velocity was determined. This study also explored the relationships among differing dry densities, clay contents, and slopes with the critical incipient motion velocity on a clay slope, the results showed that clay content, dry density, and soil gradient had a great impact on the incipient velocity. Compared with the dry density and gradient, clay content had a clearer impact on incipient velocity. The incipient motion velocity equation of cohesionless bank slope soil was verified, and the rolling incipient motion velocity equation was reliable. The incipient motion mode of clay was used to establish the mechanical balance equation of the clay slope. Then, a semi-empirical incipient motion velocity equation of the clay slope was deduced, of which the relevant parameters were solved using the test results. The proposed incipient motion velocity equation showed good fit with the test results, and the verification results demonstrate that the equation is reliable.

    参考文献
    [1] PENG J B, FAN Z J, WU D, et al. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China [J]. Engineering Geology, 2015, 186: 79-90.
    [2] LI M L, ZHANG X C, YANG Z J, et al. The rainfall erosion mechanism of high and steep slopes in loess tablelands based on experimental methods and optimized control measures [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4671-4681.
    [3] WANG G L, LI T L, XING X L, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China [J]. Environmental Earth Sciences, 2015, 73(12): 7933-7944.
    [4] JIA C F, SUN B P, YU X X, et al. Analysis of runoff and sediment losses from a sloped roadbed under variable rainfall intensities and vegetation conditions [J]. Sustainability, 2020, 12(5): 2077.
    [5] BAO Y H, GAO P, HE X B. The water-level fluctuation zone of Three Gorges Reservoir - A unique geomorphological unit [J]. Earth-Science Reviews, 2015, 150: 14-24.
    [6] BAO Y H, TANG Q, HE X B, et al. Soil erosion in the riparian zone of the Three Gorges Reservoir, China [J]. Hydrology Research, 2015, 46(2): 212-221.
    [7] KOVACS A, PARKER G. A new vectorial bedload formulation and its application to the time evolution of straight river channels [J]. Journal of Fluid Mechanics, 1994, 267: 153-183.
    [8] BONG C H J, LAU T L, GHANI A A, et al. Sediment deposit thickness and its effect on critical velocity for incipient motion [J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2016, 74(8): 1876-1884.
    [9] HOSSEIN N M M, HOSSEIN K, RASOUL M S. Laboratory analysis of incipient motion velocity for non-uniform non-cohesive sediments movement in rectangular flumes [J]. Arabian Journal of Geosciences, 2015, 9(1): 1-6.
    [10] 李林林, 张根广, 吴彰松, 等. 正负坡上均匀散粒体泥沙起动流速的研究[J]. 泥沙研究, 2016(5): 54-59.LI L L, ZHANG G G, WU Z S, et al. Incipient motion velocity of non-cohesive uniform sediment particles on the positive and negative slopes [J]. Journal of Sediment Research, 2016(5): 54-59. (in Chinese)
    [11] 周双, 张根广, 王新雷, 等. 均匀泥沙相对暴露度的试验研究[J]. 泥沙研究, 2015(6): 40-45.ZHOU S, ZHANG G G, WANG X L, et al. Study on relative exposure degree of uniform sediment [J]. Journal of Sediment Research, 2015(6): 40-45. (in Chinese)
    [12] 李林林, 张根广, 王愉乐. 任意坡面上均匀沙起动概率及起动流速的计算公式[J]. 泥沙研究, 2018, 43(3): 38-43.LI L L, ZHANG G G, WANG Y L. Threshold probability and incipient motion velocity of uniform sediment on arbitrary slopes [J]. Journal of Sediment Research, 2018, 43(3): 38-43. (in Chinese)
    [13] KANG C, CHAN D. Modeling of entrainment in debris flow analysis for dry granular material [J]. International Journal of Geomechanics, 2017, 17(10): 04017087.
    [14] WANG L, WANG S M, GUO F. Incipient motion mode and incipient velocity of soil erosion [J]. Taiwan Water Conservancy. 2021, 69(3): 46-58.
    [15] 韩其为, 何明民. 细颗粒泥沙成团起动及其流速的研究[J]. 湖泊科学, 1997, 9(4): 307-316.HAN Q W, HE M M. The incipient motion and velocity of aggegated fine particles [J]. Journal of Lake Science, 1997, 9(4): 307-316. (in Chinese)
    [16] ZHAO G S, VISSER P J, PEETERS P, et al. Headcut migration prediction of the cohesive embankment breach [J]. Engineering Geology, 2013, 164: 18-25.
    [17] ZUO L Q, ROELVINK D, LU Y J, et al. On incipient motion of silt-sand under combined action of waves and currents [J]. Applied Ocean Research, 2017, 69: 116-125.
    [18] VAN PROOIJEN B C, WINTERWERP J C. A stochastic formulation for erosion of cohesive sediments [J]. Journal of Geophysical Research: Oceans, 2010, 115(C1): C01005.
    [19] KIMIAGHALAM N, CLARK S P, AHMARI H. An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate [J]. International Journal of Sediment Research, 2016, 31(1): 1-15.
    [20] VAN RIJN L C, WALSTRA D J R, VAN ORMONDT M. Unified view of sediment transport by currents and waves. IV: Application of morphodynamic model [J]. Journal of Hydraulic Engineering, 2007, 133(7): 776-793.
    [21] WU W M, PERERA C, SMITH J, et al. Critical shear stress for erosion of sand and mud mixtures[J]. Journal of Hydraulic Research, 2018, 56 (1): 1-15.
    [22] NING C E, WAN Z H. Mechanics of sediment transport[M]. Reston, VA: American Society of Civil Engineers, 1999.
    [23] SALEM H S, RENNIE C D. Practical determination of critical shear stress in cohesive soils [J]. Journal of Hydraulic Engineering, 2017, 143(10): 04017045.
    [24] 汤明高, 许强, 黄润秋. 三峡库区典型塌岸模式研究[J]. 工程地质学报, 2006, 14(2): 172-177.TANG M G, XU Q, HUANG R Q. Types of typical bank slope collapses on the Three Gorges reservoir [J]. Journal of Engineering Geology, 2006, 14(2): 172-177. (in Chinese)
    [25] 韩其为, 何明民. 泥沙起动规律及起动流速[M]. 北京: 科学出版社, 1999.HAN Q W, HE M M. Characteristics of incipient sediment and incipient velocity [M]. Beijing: Science Press, 1999. (in Chinese)
    [26] ZHOU S, ZHANG G G, WANG Y L. Unified standard of sediment incipient motion and corresponding relationships between different threshold parameters based on probability theory [J]. Taiwan Water Conservancy, 2019, 67(3): 16-23.
    [27] 洪大林. 黏性原状土冲刷特性研究[D]. 南京: 河海大学, 2005.HONG D L. The experiment study on the scouring characteristics of cohesive undisturbed soil [D]. Nanjing: Hohai University, 2005. (in Chinese)
    [28] 宗全利, 夏军强, 张翼, 等. 荆江段河岸黏性土体抗冲特性试验[J]. 水科学进展, 2014, 25(4): 567-574.ZONG Q L, XIA J Q, ZHANG Y, et al. Experimental study on scouring characteristics of cohesive bank soil in the Jingjiang reach [J]. Advances in Water Science, 2014, 25(4): 567-574. (in Chinese)
    相似文献
    引证文献
引用本文

王力,陈玙珊,占清华,王世梅.薄层水流冲刷条件下斜坡土体的临界起动[J].土木与环境工程学报(中英文),2024,46(2):23-32. WANG Li, CHEN Yushan, ZHAN Qinghua, WANG Shimei. Critical incipient motion of slope soil under thin layer flow scouring[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(2):23-32.10.11835/j. issn.2096-6717.2021.258

复制
分享
文章指标
  • 点击次数:289
  • 下载次数: 437
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2021-09-17
  • 在线发布日期: 2024-03-20
文章二维码