重复荷载作用后海工高性能混凝土梁刚度退化试验研究
CSTR:
作者:
作者单位:

1.江苏大学 土木工程与力学学院, 江苏 镇江 212013;2.上海宏信建筑科技有限公司, 上海 201800

作者简介:

陆春华(1979- ),男,博士,教授,主要从事混凝土结构长期性能研究,E-mail:lch79@ujs.edu.cn。
LU Chunhua (1979- ), PhD, professor, main research interest: long-term performance of concrete structures, E-mail: lch79@ujs.edu.cn.

中图分类号:

TU375.1

基金项目:

国家自然科学基金(51878319)


Experimental analysis of bending stiffness degradation of marine high-performance concrete beam after action of repeated loads
Author:
Affiliation:

1.Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China;2.Shanghai Horizon Construction Technology Co., Ltd., Shanghai 201800, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51878319)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在荷载长期作用下,钢筋混凝土受弯构件的变形是一个重要的评价指标,也是构件正常使用极限状态的验算内容之一。为了研究经历重复荷载后海工高性能混凝土梁的变形发展规律,设计制作了10根试验梁,分别进行了重复荷载试验、氯盐干湿试验以及两者的共同作用试验;通过四点受弯试验对梁的跨中挠度及刚度退化进行评价,提出了梁短期刚度规范计算公式的修正方法。研究结果表明:荷载水平按梁纯弯段弯矩等于0.4Mu确定时,施加30次重复荷载后混凝土的损伤度接近15%;对于仅进行氯盐干湿循环的试验梁,其跨中挠度发展要慢于参照梁;施加重复荷载后,试验梁的跨中挠度发展要快于参照梁;对施加重复荷载后的试验梁再进行氯盐干湿循环,梁的刚度退化更为显著。结合试验结果,采用损伤效应折减系数对梁短期刚度计算公式进行修正,并验证了修正公式的合理性和有效性。

    Abstract:

    Under long-term loading, the deformation of reinforced concrete flexural members is an important evaluation index and it is one of the checking contents of the serviceability limit state. To study the degradation law of bending stiffness of marine high-performance concrete beams after action of repeated loads, a total of 10 test beams were designed and fabricated. After exposure to the repeated load test, the chloride solution dry-wet cycle test and their coupled test, the mid-span deflection development and stiffness degradation of the test beams were evaluated using the four-point bending test. A modified method for the code formula of beam short-term stiffness is proposed. The test results indicate that when the load level is determined according to the moment of the beam’s pure bending section equal to 0.4Mu, the damage degree in concrete approaches 15% after 30 cycles of repeated load. For the test beams exposed only to the chloride solution dry-wet cycles, their mid-span deflection develops slower than that of the reference beam. After the action of repeated loads, the mid-span deflection of these test beams develops faster than that of the reference beam. When the damaged beams were exposed to chloride solution dry-wet cycles, their degradation of bending stiffness became more obvious. Based on the experimental results, the damage effect reduction factors were proposed to revise the calculation formula of beam,s short-term stiffness. The rationality and effectiveness of the revised formula are verified by the test data.

    参考文献
    [1] 金伟良, 夏晋, 毛江鸿. 混凝土结构耐久性电化学方法: 防护、修复、提升和控制[M]. 北京: 科学出版社, 2021.JIN W L, XIA J, MAO J H. Electrochemical technology for durability of concrete structures in protection, repair, enhancement and control [M]. Beijing: Science Press, 2021. (in Chinese)
    [2] 何世钦, 曹泽阳, 刘伟杰, 等. 长期荷载和氯盐环境耦合作用对钢筋混凝土梁挠度的影响[J]. 清华大学学报(自然科学版), 2019, 59(11): 902-909.HE S Q, CAO Z Y, LIU W J, et al. Influence of long-term load and chlorine corrosion on reinforced concrete beam deflection [J]. Journal of Tsinghua University (Science and Technology), 2019, 59(11): 902-909. (in Chinese)
    [3] 崔钊玮, 刘荣桂, 陆春华, 等. 干湿循环与受弯裂缝共同作用下海工砼梁内氯离子侵蚀及耐久性寿命预测[J]. 硅酸盐通报, 2020, 39(2): 344-351.CUI Z W, LIU R G, LU C H, et al. Chloride ion erosion and durability life prediction of marine concrete beams under combined action of dry-wet cycle and flexural cracks [J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 344-351. (in Chinese)
    [4] HARICHE L, BALLIM Y, BOUHICHA M, et al. Effects of reinforcement configuration and sustained load on the behaviour of reinforced concrete beams affected by reinforcing steel corrosion [J]. Cement and Concrete Composites, 2012, 34(10): 1202-1209.
    [5] DU Y G, CULLEN M, LI C K. Structural effects of simultaneous loading and reinforcement corrosion on performance of concrete beams [J]. Construction and Building Materials, 2013, 39: 148-152.
    [6] DONG J F, ZHAO Y X, WANG K, et al. Crack propagation and flexural behaviour of RC beams under simultaneous sustained loading and steel corrosion [J]. Construction and Building Materials, 2017, 151: 208-219.
    [7] LI H D, LI B, JIN R Y, et al. Effects of sustained loading and corrosion on the performance of reinforced concrete beams [J]. Construction and Building Materials, 2018, 169: 179-187.
    [8] YIN S P, NA M W, YU Y L, et al. Research on the flexural performance of RC beams strengthened with TRC under the coupling action of load and marine environment [J]. Construction and Building Materials, 2017, 132: 251-261.
    [9] 宋玉普. 混凝土结构的疲劳性能及设计原理[M]. 北京: 机械工业出版社, 2006.SONG Y P. Fatigue behavior and design principle of concrete structures [M]. Beijing: China Machine Press, 2006. (in Chinese)
    [10] 曾帅. 带损伤混凝土梁腐蚀和疲劳作用下疲劳寿命试验研究[D]. 北京: 北方工业大学, 2016.ZENG S. Research on damage of concrete beam in fatigue life under the action of corrosion and fatigue load [D]. Beijing: North China University of Technology, 2016. (in Chinese)
    [11] 刘子键, 郑晓宁, 刁波. 疲劳荷载与海水侵蚀作用下钢筋混凝土梁耐久性试验[J]. 建筑结构学报, 2014, 35(3): 171-177.LIU Z J, ZHENG X N, DIAO B. Durability experiment of reinforced concrete beam under combined actions of seawater corrosion and fatigue loading [J]. Journal of Building Structures, 2014, 35(3): 171-177. (in Chinese)
    [12] 王鑫, 庞森, 刁波, 等. 海水干湿环境下循环荷载损伤混凝土梁的力学性能劣化[J]. 工业建筑, 2017, 47(2): 67-70, 140.WANG X, PANG S, DIAO B, et al. Mechanical performance degradation of RC beams damaged by different levels of cycle loading under seawater wet-dry environment [J]. Industrial Construction, 2017, 47(2): 67-70, 140. (in Chinese)
    [13] 刘家海, 于定勇, 李中会. 海工高性能混凝土含气量经时变化规律[J]. 中国海洋大学学报, 2016, 46(8): 104-109.LIU J H, YU D Y, LI Z H. Time-dependent compressive air content of marine high performance concrete [J]. Periodical of Ocean University of China, 2016, 46(8): 104-109. (in Chinese)
    [14] 张敏杰, 蒋亚清, 赵越. 海工高性能混凝土配制及耐久性研究[J]. 混凝土与水泥制品, 2017(6): 1-5.ZHANG M J, JIANG Y Q, ZHAO Y. Research on preparation and durability of marine engineering high-performance concrete [J]. China Concrete and Cement Products, 2017(6): 1-5. (in Chinese)
    [15] JALAL M, POULADKHAN A, HARANDI O F, et al. Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete [J]. Construction and Building Materials, 2015, 94: 90-104.
    [16] 马宏强, 易成, 朱红光, 等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报, 2018, 32(14): 2390-2395.MA H Q, YI C, ZHU H G, et al. Compressive strength and durability of coal gangue aggregate concrete [J]. Materials Review, 2018, 32(14): 2390-2395. (in Chinese)
    [17] 混凝土结构设计规范2015年版: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2015.Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [18] 李永靖, 潘铖, 张淑坤, 等. 循环荷载对煤矸石混凝土损伤试验研究[J]. 硅酸盐通报, 2019, 38(8): 2531-2535.LI Y J, PAN C, ZHANG S K, et al. Experimental study on damage of coal gangue concrete under cyclic load [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2531-2535. (in Chinese)
    [19] 混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012.Standard for test method of concrete structures: GB/T 50152—2012 [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [20] 万翱宙. 损伤钢筋混凝土梁疲劳性能试验研究[D]. 长沙: 中南大学, 2014.WAN A Z. Experimental study on fatigue behavior of the damaged reinforced concrete beam [D]. Changsha: Central South University, 2014. (in Chinese)
    [21] 钟小平, 彭蓝鸽, 袁承斌, 等. 氯盐-锈蚀耦合损伤混凝土抗压强度试验[J]. 工业建筑, 2020, 50(12): 69-75.ZHONG X P, PENG L G, YUAN C B, et al. Experimental research on compressive strength of concrete damaged by coupling of chlorine-corrosion [J]. Industrial Construction, 2020, 50(12): 69-75. (in Chinese)
    [22] 金伟良, 袁迎曙, 卫军. 氯盐环境下混凝土结构耐久性理论与设计方法[M]. 北京: 科学出版社, 2011.JIN W L, YUAN Y S, WEI J. Durability theory and design method of concrete structures in chloride environment [M]. Beijing: Science Press, 2011. (in Chinese)
    [23] 李隽, 高培伟, 刘宏伟, 等. 混凝土在浸泡和干湿循环作用下的抗氯盐侵蚀性能[J]. 南京理工大学学报, 2017, 41(5): 666-670.LI J, GAO P W, LIU H W, et al. Study on concrete resistance to chloride salt corrosion under full soaking and wet-dry cycling condition [J]. Journal of Nanjing University of Science and Technology, 2017, 41(5): 666-670. (in Chinese)
    [24] 莫齐伟, 商怀帅, 徐芹文. 加速锈蚀与持续荷载对钢筋混凝土粘结性能的影响[J]. 建筑结构, 2021, 51(14): 112-116, 93.MO Q W, SHANG H S, XU Q W. Research on bonding performance between steel bar and concrete under accelerated corrosion and sustained load [J]. Building Structure, 2021, 51(14): 112-116, 93. (in Chinese)
    [25] 邹正浩, 杨国姣, 吴瑾, 等. 钢筋锈蚀再生混凝土梁刚度退化规律及计算方法研究[J]. 建筑结构, 2021, 51(4): 86-90, 64.ZOU Z H, YANG G J, WU J, et al. Degradation law and calculation method of stiffness of recycled concrete beams with corroded rebars [J]. Building Structure, 2021, 51(4): 86-90, 64. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆春华,吴小龙,蔡启明,张菊连.重复荷载作用后海工高性能混凝土梁刚度退化试验研究[J].土木与环境工程学报(中英文),2024,46(3):171-179. LU Chunhua, WU Xiaolong, CAI Qiming, ZHANG Julian. Experimental analysis of bending stiffness degradation of marine high-performance concrete beam after action of repeated loads[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(3):171-179.10.11835/j. issn.2096-6717.2022.006

复制
分享
文章指标
  • 点击次数:170
  • 下载次数: 396
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-10-22
  • 在线发布日期: 2024-05-20
文章二维码