静停时间对长江下游蒸养疏浚砂浆特性的影响
CSTR:
作者:
作者单位:

1.河海大学,土木与交通学院,南京 210098;2.河海大学,水利水电学院,南京 210098;3.浙江交工集团股份有限公司,杭州 310051;4.扬州水利局,江苏 扬州 225000

作者简介:

吴朝国(1999- ),男,主要从事绿色高性能混凝土材料研究,E-mail:wcg19991116@163.com。
WU Chaoguo (1999- ), main research interest: high performance green concrete materials, E-mail: wcg19991116@163.com.

通讯作者:

陈徐东(通信作者),男,教授,博士生导师,E-mail:cxdong1985@163.com。

中图分类号:

TU521.1

基金项目:

国家重点研发计划(2021YFB2600200);国家自然科学基金(51979090);国家重点实验室开放基金(2019CEM002)


The influence of static stop time on the characteristics of steam dredged mortar in the Yangtze River
Author:
Affiliation:

1.a. College of Civil Engineering and Transportation; 1b. College of Water Resources and Hydropower, Hohai University, Nanjing 210098, P. R. China; 2. Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310051, P. R. China; 3. Yangzhou Water Resources Bureau, Yangzhou 225000, Jiangsu, P. R. China

Fund Project:

National Key R & D Program of China (No. 2021YFB2600200); National Natural Science Foundation of China (No. 51979090); State Key Laboratory of High-Performance Civil Engineering Materials (No. 2019CEM002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长江下游航道疏浚产生大量疏浚砂,疏浚砂的资源化利用受到重视。利用疏浚砂部分取代机制砂制备砂浆,研究不同静停时间对疏浚砂砂浆特性的影响,测试不同龄期的抗压强度,通过X射线衍射、扫描电镜、压汞技术,分析不同静停时间、不同疏浚砂取代率砂浆的微观特性。结果表明:随着静停时间的增加,90 d抗压强度逐渐增加,抗渗性能得到明显改善;掺入疏浚砂使得砂浆的抗压强度有所提高,且随疏浚砂取代率的增加先增大后减小;疏浚砂砂浆的抗压强度与疏浚砂取代率有较大关系,其影响程度与静停时间有关,疏浚砂对低静停时间有较突出的增强效果;疏浚砂有效改善了由蒸养造成的孔结构粗化和孔隙增大等问题,适宜的疏浚砂取代率对蒸养砂浆性能的改善效果明显。

    Abstract:

    Due to the large amount of dredged sand produced by dredging in the lower reaches of the Yangtze River, the resource utilization of dredged sand has been given attention. The mortar was prepared by partially replacing manufactured sand with dredged sand, and the influence of different static stop time on the characteristics of dredged sand mortar was studied, the compressive strength at different ages was tested, through X-ray diffraction, scanning electron microscopy, and mercury pressing technology, the micro characteristics of different static stop time different dredged sand replacement rate mortar. The results show that with the increase of static stop time, the 90 d compressive strength increases gradually, and the impermeability is also significantly improved; The compressive strength of mortar increases with the addition of dredged sand, and increases first and then decreases with the increase of replacement rate of dredged sand; The compressive strength of dredged sand mortar has a great relationship with the replacement rate of dredged sand, and its influence degree is related to the static stop time. The dredged sand has a prominent strengthening effect on the low static stop time; dredged sand can effectively improve the problems of pore structure coarsening and pore enlargement caused by steam curing. Appropriate replacement rate of dredged sand has obvious improvement effect on the performance of steam curing mortar.

    参考文献
    [1] 李青云. 推进长江航道疏浚砂综合利用: 《关于促进砂石行业健康有序发展的指导意见》解读[N]. 中国水运报, 2020-04-01(1).LI Q Y. Promoting the comprehensive utilization of dredged sand in the Yangtze River waterway [N]. China Shipping News, 2020-04-01(001). (in Chinese)
    [2] 李水江, 汤家郗, 李校兵, 等. 真空预压联合逐级动力压实和电渗法处理疏浚淤泥试验研究[J. 土木与环境工程学报(中英文), 2023, 45(6): 143-150.LI S J, TANG J X, LI X B, et al. Vacuum preloading combined with step-by-step dynamic compaction and electroosmosis treatment of dredged sludge experimental study [J]. Journal of Civil and Environmental Engineering, 2023, 45(6): 143-150. (in Chinese)
    [3] 张伟, 刘晓强, 李顺群, 等. 天津临港疏浚土固化特性及强度预测分析[J]. 水利水电技术, 2020, 51(4): 20-26.ZHANG W, LIU X Q, LI S Q, et al. Analysis on prediction of solidifying characteristics and strength of dredged soil in port-vicinity area of Tianjin [J]. Water Resources and Hydropower Engineering, 2020, 51(4): 20-26. (in Chinese)
    [4] VAN BUNDEREN C, SNELLINGS R, VANDEWALLE L, et al. Early-age hydration and autogenous deformation of cement paste containing flash calcined dredging sediments [J]. Construction and Building Materials, 2019, 200: 104-115.
    [5] SNELLINGS R, HORCKMANS L, VAN BUNDEREN C, et al. Flash-calcined dredging sediment blended cements: Effect on cement hydration and properties [J]. Materials and Structures, 2017, 50(6): 241.
    [6] 李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343.LI S T, CHEN X D, ZHANG W, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River [J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343. (in Chinese)
    [7] 秦拥军, 张亮亮, 渠长伟, 等. 钢纤维沙漠砂混凝土梁受弯力学性能试验[J]. 复合材料学报, 2022, 39(11): 5599-5610.QIN Y J, ZHANG L L, QU C W, et al. Experimental study on flexural mechanical properties of steel fiber desert sand concrete beams [J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5599-5610.(in Chinese)
    [8] 梅军帅, 吴静, 王罗新, 等. 珊瑚砂浆的力学性能与微观结构特征[J]. 建筑材料学报, 2020, 23(2): 263-270.MEI J S, WU J, WANG L X, et al. Mechanical properties and microstructural characteristics of coral sand mortar [J]. Journal of Building Materials, 2020, 23(2): 263-270. (in Chinese)
    [9] PENG X, ZHOU Y, JIA R, et al. Preparation of non-sintered lightweight aggregates from dredged sediments and modification of their properties [J]. Construction and Building Materials, 2017, 132: 9-20.
    [10] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10): 2428-2438.LIU X, LI F, SHE Y P. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column [J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2428-2438. (in Chinese)
    [11] 吴琪, 丁选明, 陈志雄, 等. 不同密实度珊瑚砂地基地震响应特性试验研究[J]. 水利水电技术, 2019, 50(Sup1): 1-5.WU Q, DING X M, CHEN Z X, et al. Study on seismic characteristics of coral sand with different relative density [J]. Water Resources and Hydropower Engineering, 2019, 50(Sup1): 1-5. (in Chinese)
    [12] 董伟, 肖阳, 苏英, 等. 风积沙混凝土轴心受压力学性能研究[J]. 工程科学与技术, 2020, 52(3): 86-92.DONG W, XIAO Y, SU Y, et al. Study on axial compression performance of aeolian sand concrete [J]. Advanced Engineering Sciences, 2020, 52(3): 86-92. (in Chinese)
    [13] ZDEB T. An analysis of the steam curing and autoclaving process parameters for reactive powder concretes [J]. Construction and Building Materials, 2017, 131: 758-766.
    [14] 张耀煌, 孙红, 李晓, 等. 蒸养制度对混凝土抗压强度的影响及其预测研究[J]. 材料导报, 2015, 29(Sup2): 554-558, 564.ZHANG Y H, SUN H, LI X, et al. Study of steam-cured system impact on concrete compressive strength and prediction of strength model [J]. Materials Review, 2015, 29(Sup2): 554-558, 564. (in Chinese)
    [15] SHI J Y, LIU B J, ZHOU F, et al. Heat damage of concrete surfaces under steam curing and improvement measures [J]. Construction and Building Materials, 2020, 252: 119104.
    [16] 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021 [S]. 北京: 中国标准出版社, 2021.Test method of cement mortar strength (ISO method): GB/T 17671—2021 [S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [17] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5): 1212-1221.LI Y G, ZHANG H M, LIU G X, et al. Mechanical properties and influence mechanism of aeolian sand concrete [J]. Journal of Building Materials, 2020, 23(5): 1212-1221. (in Chinese)
    [18] 郭东, 苏春义, 彭自强, 等. 海水拌和珊瑚礁砂混凝土力学性能及微观结构[J]. 建筑材料学报, 2018, 21(1): 41-46.GUO D, SU C Y, PENG Z Q, et al. Mechanical properties and microstructure of concrete prepared with coral reef sand and sea water [J]. Journal of Building Materials, 2018, 21(1): 41-46. (in Chinese)
    [19] 李松, 焦楚杰, 甘元初. 废玻璃粉混凝土力学性能研究[J]. 工程科学与技术, 2019, 51(5): 199-205.LI S, JIAO C J, GAN Y C. Study on mechanical properties of waste glass powder concrete [J]. Advanced Engineering Sciences, 2019, 51(5): 199-205. (in Chinese)
    [20] 杨世玉, 赵人达, 靳贺松, 等. 粉煤灰地聚物砂浆早期强度的影响参数研究[J]. 工程科学与技术, 2020, 52(6): 162-169.YANG S Y, ZHAO R D, JIN H S, et al. Research on influence parameters of early strength of fly ash-based geopolymer mortar [J]. Advanced Engineering Sciences, 2020, 52(6): 162-169. (in Chinese)
    [21] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.XUE C Z, SHEN A Q, GUO Y C. Prediction model for the compressive strength of concrete mixed with CWCPM based on pore structure parameters [J]. Materials Reports, 2019, 33(8): 1348-1353. (in Chinese)
    [22] 于本田, 刘通, 王焕, 等. 花岗斑岩石粉含量对混凝土性能及微观结构的影响[J]. 吉林大学学报(工学版), 2022, 52(5): 1052-1062.YU B T, LIU T, WANG H, et al. Influence of granite porphyry stone powder content on properties and microstructure of concrete [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 1052-1062. (in Chinese)
    [23] BAHAFID S, GHABEZLOO S, DUC M, et al. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density [J]. Cement and Concrete Research, 2017, 95: 270-281.
    [24] 韩松, 崔叶富, 郑玉飞, 等. 低水胶比水泥浆体的力学性能与水泥石微结构[J]. 硅酸盐学报, 2019, 47(2): 153-160.HAN S, CUI Y F, ZHENG Y F, et al. Mechanical properties and pore-structure of hardened cement paste with low water-binder ratio [J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 153-160. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴朝国,陈徐东,宁英杰,张伟,冯璐.静停时间对长江下游蒸养疏浚砂浆特性的影响[J].土木与环境工程学报(中英文),2024,46(4):193-201. WU Chaoguo, CHEN Xudong, NING Yingjie, ZHANG Wei, FENG Lu. The influence of static stop time on the characteristics of steam dredged mortar in the Yangtze River[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(4):193-201.10.11835/j. issn.2096-6717.2022.107

复制
分享
文章指标
  • 点击次数:138
  • 下载次数: 247
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-07-12
  • 在线发布日期: 2024-07-07
文章二维码