无机材料固化镉铅镍污染土的环境效应及失稳机制
CSTR:
作者:
作者单位:

1.河北工业大学,土木与交通学院,天津 300401;2.河北工业大学,河北省土木工程技术研究中心,天津 300401

作者简介:

李敏(1985- ),女,博士,教授,主要从事污染土的处置研究,E-mail:limin0409@hebut.edu.cn。
LI Min (1985- ), PhD, professor, main research interest: disposal of contaminated soil, E-mail: limin0409@hebut.edu.cn.

中图分类号:

X53

基金项目:

国家自然科学基金(51978235);河北省自然科学基金(E2018202274);河北省科技创新战略基金(20180602)


Environmental effects and instability mechanism of cadmium, lead and nickel contaminated soil solidified by inorganic materials
Author:
Affiliation:

1.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, P. R. China;2.Hebei Research Center of Civil Engineering Technology, Hebei University of Technology, Tianjin 300401, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51978235); Natural Science Foundation of Hebei (No. E2018202274); Science and Technology Innovation Strategic Fundation of Hebei (No. 20180602)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    固化污染土的环境效应是废土二次应用过程中需研究的工程问题。以镉、铅、镍污染土为研究对象,通过固化率指标初筛适宜固化材料配比,模拟干湿循环、长期浸水、高温、冻融循环环境,以浸出毒性指标评价水泥、水泥+粉煤灰、石灰固化后土体的环境效应,并结合微观形态及重金属形态分析,评价失稳机制。结果表明:无机材料可将土中重金属的固化率提高至90%以上,8%的石灰适用于镉污染土的固化,32%+8%的水泥+粉煤灰适用于铅及镍污染土的固化。水环境(干湿、浸水)条件下固化污染土均不存在环境风险,其浸出毒性均低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3—2007)中的限值;但无机材料固化污染土对温度(高温、冻融)敏感,特别是水泥、水泥+粉煤灰固化污染土,在温度超过70 ℃时的浸出毒性超过标准中限值,在冻融循环5~7次时接近标准限值。高温会促使重金属赋存形态从稳定态向非稳定态转化,冻融循环会破坏重金属-固化产物体系的结构。无机材料固化重金属污染土的应用需要考虑环境温度的影响。

    Abstract:

    The environmental effect of solidified contaminated soil is an engineering issue that needs to be studied in the process of waste soil reapplication. Taking cadmium, lead and nickel contaminated soil as the research object, through the initial screening of the curing rate index, the suitable curing material ratio, simulating wetting and drying cycles, long-term water immersion, high temperature, freeze-thaw cycles environment, and evaluate the environmental effects of soil after cement, cement+fly ash and lime solidification by the leaching toxicity index, combined with microscopic and heavy metal morphology analysis, evaluate the instability mechanism. The result shows that inorganic materials can increase the solidification rate of heavy metals to more than 90%, 8% lime is suitable for the solidification of cadmium contaminated soil, and 32%+8% cement+fly ash is suitable for lead and nickel contaminated soil. Solidification of contaminated soil under water environment (wetting and drying , water immersion) has no environmental risk, and its leaching toxicity is lower than the limit in the Identification standard for hazardous wastes: Identification for extraction toxicity (GB 5085.3—2007); but solidification contaminated soil is sensitive to temperature (high temperature, freeze-thaw), especially cement, cement+fly ash solidified contaminated soil, when the temperature exceeds 70 ℃, the leaching toxicity exceeds the standard limit, and it is close to the freeze-thaw cycles 5-7 times the standard limit. High temperature will promote the transformation of the occurrence of heavy metals from a stable state to an unsteady state. The freeze-thaw cycles will destroy the structure of the heavy metal-solidified product system. The application of inorganic materials to solidify heavy metal contaminated soil needs to consider the influence of environmental temperature.

    参考文献
    [1] 中华人民共和国生态环境部. 2020中国生态环境状况公报[EB/OL]. (2021-05-26)[2021-12-06] https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526 572756184785.pdf.Ministry of Ecology and Environment of People,Republic of China s. Bulletin of china,s ecological environment 2020 [EB/OL]. (2021-05-26) [2021-12-06] https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf.(in Chinese)
    [2] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152.LUO Y M, TENG Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 145-152. (in Chinese)
    [3] MALONE P G, JONES L W, LARSON R J. Guide to the disposal of chemically stabilized and solidified waste (SW-872) [R]. Washington DC: Office of Water and Waste Management, 1980.
    [4] MOUEDHEN I, COUDERT L, BLAIS J F, et al. Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste [J]. Journal of Environmental Management, 2018, 209: 23-36.
    [5] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives [J]. Chemosphere, 2017, 171: 710-721.
    [6] KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review [J]. Waste Management, 2008, 28(1): 215-225.
    [7] 曹智国, 章定文, 刘松玉. 固化铅污染土的干湿循环耐久性试验研究[J]. 岩土力学, 2013, 34(12): 3485-3490.CAO Z G, ZHANG D W, LIU S Y. Experimental research on durability of solidified lead-contaminated soils under wetting-drying cycles [J]. Rock and Soil Mechanics, 2013, 34(12): 3485-3490. (in Chinese)
    [8] 杨洁, 钱赵秋, 王旌. 反复冻融与高温老化对砷污染土壤固化稳定化效果的影响[J]. 环境科学, 2017, 38(11): 4844-4849.YANG J, QIAN Z Q, WANG J. Effects of repeated freezing and thawing and high temperature aging on the solidification and stabilization of arsenic contaminated soil [J]. Environmental Science, 2017, 38(11): 4844-4849. (in Chinese)
    [9] LIU C, LV Y R, YU X J, et al. Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil [J]. Geotextiles and Geomembranes, 2020, 48(4): 581-590.
    [10] 侯世伟, 张皓, 杨镇吉, 等. 磷酸镁水泥固化铜污染土的冻融稳定性研究[J]. 岩石力学与工程学报, 2020, 39(Sup1): 3123-3129.HOU S W, ZHANG H, YANG Z J, et al. Study on freeze-thaw stability of Cu-contaminated soil solidified by magnesium phosphate cement [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup1): 3123-3129. (in Chinese)
    [11] 周俊杰, 陈蕾, 唐强, 等. 冻融对固化重金属污染土强度特性的影响[J]. 南京工业大学学报(自然科学版), 2018, 40(3): 81-87.ZHOU J J, CHEN L, TANG Q, et al. Stress-strain properties of heavy metal contaminated soils stabilized/solidified by cement under cyclic freezing-thawing [J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(3): 81-87. (in Chinese)
    [12] 土壤环境质量 建设用地土壤污染风险管控标准(试件): GB 36600—2018 [S]. 北京: 中国标准出版社, 2018.Soil environmental quality-Risk control standard for soil contamination of development land: GB 36600—2018 [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [13] 公路土工试验规程: JTG 3430—2020 [S]. 北京: 人民交通出版社股份有限公司, 2020.Test methods of soils for highway engineering: JTG 3430— 2020 [S]. Beijing: China Communications Press Co., Ltd., 2020. (in Chinese)
    [14] MAAITAH O N. Soil stabilization by chemical agent [J]. Geotechnical and Geological Engineering, 2012, 30(6): 1345-1356.
    [15] S A MABD EL-AZEEM, AHMAD M, USMAN A R A, et al. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials [J]. Environmental Earth Sciences, 2013, 70(7): 3411-3420.
    [16] 陈灿, 谢伟强, 李小明, 等. 水泥、粉煤灰及生石灰固化/稳定处理铅锌废渣[J]. 环境化学, 2015, 34(8): 1553-1560.CHEN C, XIE W Q, LI X M, et al. Solidification/stabilization treatment of Pb and Zn in tailing waste using cement, fly ash and quick lime [J]. Environmental Chemistry, 2015, 34(8): 1553-1560. (in Chinese)
    [17] Standard test method for wetting and drying test of solid wastes: ASTM D4843-88 [S]. West Conshohocken: American Society for Testing and Materials, 2009.
    [18] ANTEMIR A, HILLS C D, CAREY P J, et al. Long-term performance of aged waste forms treated by stabilization/solidification [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 65-73.
    [19] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [20] GLASSER F P. Fundamental aspects of cement solidification and stabilisation [J]. Journal of Hazardous Materials, 1997, 52(2/3): 151-170.
    [21] 国家环境保护总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3—2007[S]. 北京: 中国环境科学出版社, 2007.State Environmental Protection Administration of the People's Republic of China. Identification standards for hazardous wastes-Identification for extraction toxicity: GB 5085.3—2007[S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
    [22] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274-281.KONG X M, LU Z C, ZHANG C Y. Recent development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration [J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 274-281. (in Chinese)
    [23] 章定文, 项莲, 曹智国. CaO对钙矾石固化/稳定化重金属铅污染土的影响[J]. 岩土力学, 2018, 39(1): 29-35.ZHANG D W, XIANG L, CAO Z G. Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. Rock and Soil Mechanics, 2018, 39(1): 29-35. (in Chinese)
    [24] HALIM C E, AMAL R, BEYDOUN D, et al. Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals [J]. Cement and Concrete Research, 2004, 34(7): 1093-1102.
    [25] BABA A, GURDAL G, SENGUNALP F, et al. Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, Province of Canakkale, Turkey [J]. Environmental Monitoring and Assessment, 2008, 139(1/2/3): 287-298.
    [26] TAO Z F, ZHANG Y, CHEN X R, et al. Effects of freeze-thaw cycles on the mechanical properties of cement-fiber composite treated silty clay [J]. Construction and Building Materials, 2022, 316: 125867.
    [27] 罗仁杰, 李发永. 冻融作用对土壤重金属迁移转化及修复调控的研究进展[J]. 环境生态学, 2021, 3(2): 62-68.LUO R J, LI F Y. Effects of freezing-thawing on the migration, transformation and remediation of heavy metals in soil [J]. Environmental Ecology, 2021, 3(2): 62-68. (in Chinese)
    [28] MEERAVALI K, ALLA S, SYED H, et al. An analysis of freeze-thaw cycles on geotechnical properties of soft-soil [J]. Materials Today: Proceedings, 2020, 27: 1304-1309.
    [29] 冯亚松. 镍锌复合重金属污染黏土固化稳定化研究——可持续固化剂研发与性能测评[D]. 南京: 东南大学, 2021.FENG Y S. Solidification/stabilization of clay soil contaminated by nickel and zinc: Sustainable binder development and performance evaluation [D]. Nanjing: Southeast University, 2021. (in Chinese)
    [30] 查甫生, 刘晶晶, 许龙, 等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1246-1252.ZHA F S, LIU J J, XU L, et al. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1246-1252. (in Chinese)
    [31] 张雪芹. 干湿循环作用下碱渣固化重金属污染土的稳定性研究[D]. 合肥: 合肥工业大学, 2017.ZHANG X Q. Research on stability of soda residue solidified/stabilized heavy mental contaminated soils under wetting-drying cycles [D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李敏,张然然,田冰雪.无机材料固化镉铅镍污染土的环境效应及失稳机制[J].土木与环境工程学报(中英文),2024,46(4):202-210. LI Min, ZHANG Ranran, TIAN Bingxue. Environmental effects and instability mechanism of cadmium, lead and nickel contaminated soil solidified by inorganic materials[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(4):202-210.10.11835/j. issn.2096-6717.2022.022

复制
分享
文章指标
  • 点击次数:121
  • 下载次数: 252
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-12-07
  • 在线发布日期: 2024-07-07
文章二维码