植物-电动耦合修复重金属污染土的效能及其强化机制
CSTR:
作者:
作者单位:

1.河北工业大学,土木与交通学院,天津 300401;2.河北工业大学,河北省土木工程技术研究中心,天津 300401

作者简介:

李敏(1985- ),女,博士,教授,主要从事污染土的处置研究,E-mail: limin0409@hebut.edu.cn。
LI Min (1985- ), PhD, professor, main research interest: disposal of contaminated soil, E-mail: limin0409@hebut.edu.cn.

中图分类号:

X53

基金项目:

国家自然科学基金(52278341、51978235);河北省自然科学基金(E2018202274);河北省科技创新战略基金(20180602)


Remediation efficiency and strengthening mechanism of heavy metal contaminated soil under phytore-electric coupling treatment
Author:
Affiliation:

1.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, P. R. China;2.Hebei Research Center of Civil Engineering Technology, Hebei University of Technology, Tianjin 300401, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos. 52278341, 51978235); Natural Science Foundation of Hebei (No. E2018202274); Science and Technology Innovation Strategic Foundation of Hebei (No. 20180602)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    重金属污染土壤的净化效果直接影响修复后土体的再利用。以Cd、Cu、Ni、Zn、Pb污染土壤为研究对象,采用改进环绕式电极布置,以植物-电动耦合修复下土壤的净化度及土壤性质为重点,厘清关键因素,揭示耦合强化修复机制。结果表明:植物-电动耦合修复下不同重金属的去除率均较单一修复有所提高,重金属赋存形态及植物对重金属的响应是影响修复效果的关键因素。改进环绕式电场的施加能积极调动更大范围土壤中的重金属向植物根系迁移聚集,解决了植物修复中重金属可及性和生物活性低的问题;植物修复的协助有利于改善电动修复对土壤性质的不利影响,解决聚焦效应和高能耗问题。植物-电动耦合修复联合了重金属的空间分布改善、重金属生物利用度提升、植物生长代谢强化及土壤微生物生命活动调节等作用机制,有效提高了重金属污染土壤的净化度,修复后土体可维持稳定的pH值(6.27~7.91)、电导率(108~159 μs/cm)及低能耗(13.76~18.81 kW·h/m3),有助于推进污染土壤的可持续利用。

    Abstract:

    The purification degree of heavy metal contaminated soil directly affects its reuse. This paper took the soil contaminated with Cd, Cu, Ni, Zn and Pb as the research object, and the improved surround electrode arrangement as the testing method. The purification degree and soil properties of contaminated soil under phytore-electric coupling remediation were used as indicators to examine the key factors and reveal the enhancing mechanism. The results demonstrate that the removal rate of phytore-electric coupling remediation is higher than that of single one, and the occurrence form of heavy metals and the response of plants to heavy metals are the key factors. The method of improved surround electrode arrangement can actively mobilize the migration and then accumulation of heavy metals in a larger range of soil to plant roots, and then solve the problem of low accessibility and biological activity of heavy metals in sole phytoremediation. The assistance of phytoremediation is beneficial to relieve the adverse effects of electrokinetic remediation on soil properties, and solves the problem of concentrating effect and high energy consumption. The coupling remediation combined the improvement of spatial distribution and bioavailability of heavy metals, metabolism of plant, and life activities of soil microbial, which effectively improve the purification of heavy metal contaminated soil. After remediation, the soil can maintain a stable pH of 6.27-7.91, and a conductivity of 108-159 μs/cm. In addition, the energy consumption is only 13.76-18.81 kW·h/m3. The phytore-electric coupling remediation method helps to promote the sustainable use of contaminated soil.

    参考文献
    [1] 生态环境部. 2021年中国生态环境状况公报(摘录)[J]. 环境保护, 2022, 50(12): 61-74.Ministry of Ecology and Environment. Bulletin on ecological environment in China in 2021 (excerpt) [J]. Environmental Protection, 2022, 50(12): 61-74. (in Chinese)
    [2] XU D M, FU R B, LIU H Q, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review [J]. Journal of Cleaner Production, 2021, 286: 124989.
    [3] 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277-2288.WANG H B, GOU W X, WU Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies [J]. Chinese Journal of Ecology, 2021, 40(8): 2277-2288. (in Chinese)
    [4] BURGES A, ALKORTA I, EPELDE L, et al. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites [J]. International Journal of Phytoremediation, 2018, 20(4): 384-397.
    [5] O'CONNOR C S, LEPP N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study [J]. Environmental Monitoring and Assessment, 2003, 84(1): 141-158.
    [6] HE R R, XI G, LIU K. Alleviating effect of extremely low frequency pulsed electric field on drought damage of maize seedling roots [J]. Journal of Luminescence, 2017, 188: 441-447.
    [7] CAMESELLE C, GOUVEIA S, URRéJOLA S. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals [J]. Chemosphere, 2019, 229: 481-488.
    [8] SIYAR R, DOULATI ARDEJANI F, FARAHBAKHSH M, et al. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic [J]. Chemosphere, 2020, 246: 125802.
    [9] PUTRA R S, OHKAWA Y, TANAKA S. Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.) [J]. Separation and Purification Technology, 2013, 102: 34-42.
    [10] 魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L) [J]. 科学通报, 2004, 49(24): 2568-2573.WEI S H, ZHOU Q X, WANG X, et al. Solanum nigrum L, a newly discovered cadmium hyperaccumulator [J]. Chinese Science Bulletin, 2004, 49(24): 2568-2573. (in Chinese)
    [11] 林诗悦, 冯义彪. 镉锌铅复合污染土壤的超富集植物修复能力研究[J]. 环境工程, 2017, 35(3): 168-173.LIN S Y, FENG Y B. Study on phytoremediation of hyperaccumulators for cadmium, zinc and lead in the multiple contaminated soils [J]. Environmental Engineering, 2017, 35(3): 168-173. (in Chinese)
    [12] 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018 [S]. 北京: 中国标准出版社, 2018.Soil environmental quality: Risk control standard for soil contamination of agricultural land: GB 15618—2018 [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [13] FAN G P, ZHOU D M, ZHANG Z H, et al. Effect of two-dimensional electric field on the growth and cadmium uptake of Sedum plumbizincicola [J]. Separation and Purification Technology, 2021, 259: 118121.
    [14] RAURET G, LóPEZ-SáNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61.
    [15] 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法: HJ 491—2019 [S]. 北京: 中国环境出版社, 2019.Soil and sediment-Determination of copper, zinc, lead, nickel and chromium-Flame atomic absorption spectrophotometry: HJ 491—2019 [S]. Beijing: China Environmental Science Press, 2019. (in Chinese)
    [16] 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法: GB/T 17141—1997 [S]. 北京: 中国标准出版社, 1997.Soil quality-Determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry: GB/T 17141—1997 [S]. Beijing: Standards Press of China, 1997. (in Chinese)
    [17] BERNICK M B, GETTY D, PRINCE G, et al. Statistical evaluation of field-portable X-ray fluorescence soil preparation methods [J]. Journal of Hazardous Materials, 1995, 43(1/2): 111-116.
    [18] SABERI N, AGHABABAEI M, OSTOVAR M, et al. Simultaneous removal of polycyclic aromatic hydrocarbon and heavy metals from an artificial clayey soil by enhanced electrokinetic method [J]. Journal of Environmental Management, 2018, 217: 897-905.
    [19] 郭观林, 周启星. 污染黑土中重金属的形态分布与生物活性研究[J]. 环境化学, 2005, 24(4): 383-388.GUO G L, ZHOU Q X. Speciation distribution and bioactivity of heavy metals in contaminated phaiozem [J]. Environmental Chemistry, 2005, 24(4): 383-388. (in Chinese)
    [20] DANNEHL D. Effects of electricity on plant responses [J]. Scientia Horticulturae, 2018, 234: 382-392.
    [21] WEN D D, FU R B, LI Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review [J]. Journal of Hazardous Materials, 2021, 401: 123345.
    [22] 王亚, 冯发运, 葛静, 等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 829-842.WANG Y, FENG F Y, GE J, et al. Effects and mechanisms of plant root exudates on soil remediation [J]. Acta Ecologica Sinica, 2022, 42(3): 829-842. (in Chinese)
    [23] 杨晓远, 王海娟, 王宏镔. 龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展[J]. 生态毒理学报, 2020, 15(6): 72-81.YANG X Y, WANG H J, WANG H B. Advances in physiological and molecular mechanisms of cadmium hyperaccumulation by Solanum nigrum L. [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 72-81. (in Chinese)
    [24] 莫思琪, 曹旖旎, 谭倩. 根系分泌物在重金属污染土壤生态修复中的作用机制研究进展[J]. 生态学杂志, 2022, 41(2): 382-392.MO S Q, CAO Y N, TAN Q. Research progress on root exudates and their effects on ecological remediation of heavy metal contaminated soil [J]. Chinese Journal of Ecology, 2022, 41(2): 382-392. (in Chinese)
    [25] DING L, LV W Y, YAO K, et al. Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology [J]. Environmental Science and Pollution Research, 2017, 24(4): 3430-3436.
    [26] 倪静, 王子腾, 耿雪玉. 植物-生物聚合物联合法固土的试验研究[J]. 岩土工程学报, 2020, 42(11): 2131-2137.NI J, WANG Z T, GENG X Y. Experimental study on combined plant-biopolymer method for soil stabilization [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2131-2137. (in Chinese)
    [27] 关天霞, 何红波, 张旭东, 等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报, 2011, 42(2): 503-512.GUAN T X, HE H B, ZHANG X D, et al. The methodology of fractionation analysis and the factors affecting the species of heavy metals in soil [J]. Chinese Journal of Soil Science, 2011, 42(2): 503-512. (in Chinese)
    [28] MAO X Y, HAN F X, SHAO X H, et al. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2016, 125: 16-24.
    [29] 彭之晟, 曹智国, 章定文. 碳化作用对固化/稳定化污染土中铅的化学溶出特性的影响[J]. 土木与环境工程学报(中英文), 2022, 44(3): 195-202.PENG Z S, CAO Z G, ZHANG D W. Effect of carbonation on chemical dissolution characteristics of lead in solidified/stabilized contaminated soil [J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 195-202. (in Chinese)
    [30] XU L, DAI H P, SKUZA L, et al. The effects of different electric fields and electrodes on Solanum nigrum L. Cd hyperaccumulation in soil [J]. Chemosphere, 2020, 246: 125666.
    [31] 何玉君, 孙梦荷, 沈亚婷, 等. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657.HE Y J, SUN M H, SHEN Y T, et al. Research progress on the interaction mechanism between hyperaccumulator and heavy metals and its application [J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. (in Chinese)
    [32] 谢菊芳, 易伟松, 熊钢, 等. 高压静电场对植物细胞跨膜电位的影响及机理初探[J]. 武汉科技学院学报, 2002, 15(3): 16-18.XIE J F, YI W S, XIONG G, et al. The effect of high electrostatic field on plant cellular transmembrane voltage and micro principles [J]. Journal of Wuhan Institute of Science and Technology, 2002, 15(3): 16-18. (in Chinese)
    [33] YAASHIKAA P R, KUMAR P S, JEEVANANTHAM S, et al. A review on bioremediation approach for heavy metal detoxification and accumulation in plants [J]. Environmental Pollution, 2022, 301: 119035.
    [34] HUSSON O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy [J]. Plant and Soil, 2013, 362(1): 389-417.
    [35] 张丽芳, 胡海林. 土壤酸碱性对植物生长影响的研究进展[J]. 贵州农业科学, 2020, 48(8): 40-43.ZHANG L F, HU H L. Research progress on effect of soil pH on plant growth [J]. Guizhou Agricultural Sciences, 2020, 48(8): 40-43. (in Chinese)
    [36] WANG C Z, LUO Y Y, HUO Z L, et al. Salt accumulation during cropping season in an arid irrigation area with shallow water table depth: A 10-year regional monitoring [J]. Water, 2022, 14(10): 1664.
    [37] 栾常慧. 人工电场下土壤中重金属元素迁移规律研究[D]. 长春: 吉林大学, 2022.LUAN C H. Study on migration law of heavy metal elements in soil under artificial electric field [D].Changchun: Jilin University, 2022. (in Chinese)
    [38] CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil [J]. Electrochimica Acta, 2015, 181: 179-191.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李敏,赵博华,于禾苗,齐振霄,李辉.植物-电动耦合修复重金属污染土的效能及其强化机制[J].土木与环境工程学报(中英文),2024,46(5):26-37. LI Min, ZHAO Bohua, YU Hemiao, QI Zhenxiao, LI Hui. Remediation efficiency and strengthening mechanism of heavy metal contaminated soil under phytore-electric coupling treatment[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(5):26-37.10.11835/j. issn.2096-6717.2023.082

复制
分享
文章指标
  • 点击次数:211
  • 下载次数: 324
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-20
  • 在线发布日期: 2024-07-24
文章二维码