生物酶辅助氧化镁碳化过程砂土加固试验研究
CSTR:
作者:
作者单位:

河海大学 岩土力学与堤坝工程教育部重点实验室,南京 210024

作者简介:

何稼(1982- ),男,副教授,主要从事生物岩土技术、地基处理新技术研究,E-mail:hejiahhu@163.com。
HE Jia (1982- ), associate professor, main research interests: bio-geotechnical technology and new technology of foundation treatment, E-mail: hejiahhu@163.com.

中图分类号:

TU472.4

基金项目:

国家自然科学基金(52078188、51978244、2022M720999)


Experimental study on enzyme enhanced magnesia carbonation process for soil stabilization
Author:
Affiliation:

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos.52078188, 51978244, 2022M720999)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于微生物或酶诱导碳酸盐沉积(即MICP和EICP)过程的固土技术具备固化强度高、环境友好等特点,但是目前也存在处理效率低、耗时长等局限。为克服这些局限,研究一种新型高效的生物固土技术,即基于植物脲酶辅助氧化镁碳化(酶辅助碳化)过程的固土法,探索其处理方法、效果和作用机理,并与单纯的氧化镁碳化、EICP和水泥等方法进行比较。结果表明,采用酶辅助碳化加固法时,一遍处理强度可达0.92 MPa,且试样的强度显著高于单纯氧化镁处理(0.30 MPa)、EICP处理(0.28 MPa)和水泥处理(0.69 MPa)。酶辅助碳化加固法处理试样的制备方式对强度影响较大。与注入法相比,采用拌和法处理的试样强度高了3倍。此外,添加少量脱脂奶粉后,酶辅助碳化加固法处理试样的强度进一步提升了约70%,达到1.30 MPa。通过微观结构和矿物成分分析发现,酶辅助碳化处理后,固化物填满了砂颗粒之间的孔隙,将砂颗粒结合在一起,形成稳定网格空间结构,与不添加脲酶的试样相比,其中的水合碳酸镁混合物含量较高,中间产物水镁石含量较低。

    Abstract:

    The soil solidification technology based on microbial- or enzyme-induced carbonate precipitation process has the characteristics of high strength and environmental friendliness. However, it has limitations such as low treatment efficiency and time-consuming. This paper studies the treatment method, effect and mechanism of another biological soil solidification technology based on the urease-enhanced magnesia carbonization process. Comparisons were made against pure magnesia carbonation, enzyme-induced calcium carbonate precipitation (EICP) and Portland cement. The results show that when the urease-enhanced magnesia carbonization treatment method is used, a higher strength (0.92 MPa) can be obtained after one treatment, and the strength of the sample is significantly higher than that of the samples treated with pure magnesia (0.30 MPa), EICP (0.28 MPa) or Portland cement (0.69 MPa). The preparation method of the urease-enhanced magnesia carbonization treatment sample also has great influence on the strength. Compared with the one-phase injection method, the strength of the sample treated by the pre-mixed method was 3 times higher. In addition, the strength of the urease-enhanced magnesia carbonization treatment sample was further improved by about 70%, and the highest strength reached 1.30 MPa, with the addition of small amount of non-fat milk powder. Through microstructural and mineralogical analysis, it was found that after urease-enhanced magnesia carbonization treatment, the solidified materials filled the pores between the sand particles, cemented the sand particles together, and formed a stable spatial structure. It could also be seen that soil treatment by urease-enhanced magnesia carbonization led to higher hydrated magnesium carbonates content, and lower brucite content.

    参考文献
    [1] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.HE J, CHU J, LIU H L, et al. Research advances in biogeotechnologies [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese)
    [2] HE J, YANG F, QI Y S, et al. Improvement in silty sand with enzyme-induced carbonate precipitation: Laboratory model experiment [J]. Acta Geotechnica, 2022, 17(7): 2895-2905.
    [3] MENG H, GAO Y F, HE J, et al. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests [J]. Geoderma, 2021, 383: 114723.
    [4] ALMAJED A, TIRKOLAEI H K, KAVAZANJIAN E, et al. Enzyme induced biocementated sand with high strength at low carbonate content [J]. Scientific Reports, 2019, 9: 1135.
    [5] WEN K J, LI Y, HUANG W, et al. Mechanical behaviors of hydrogel-impregnated sand [J]. Construction and Building Materials, 2019, 207: 174-180.
    [6] ALMAJED A, KHODADADI H, KAVAZANJIAN EJr. Sisal fiber reinforcement of EICP-treated soil [C]//IFCEE 2018. Orlando, Florida. Reston, VA: American Society of Civil Engineers, 2018: 29-36.
    [7] CUI M J, LAI H J, HOANG T, et al. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement [J]. Acta Geotechnica, 2021, 16(2): 481-489.
    [8] 曹菁菁, 刘松玉. 活性氧化镁水泥碳化加固软土地基研究进展[J]. 江苏建筑, 2014(6): 40-45.CAO J J, LIU S Y. Advances of research on the reactive magnesia stabilizing soft soil foundation based on carbonation [J]. Jiangsu Construction, 2014(6): 40-45. (in Chinese)
    [9] UNLUER C, AL-TABBAA A. Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements [J]. Cement and Concrete Research, 2013, 54: 87-97.
    [10] VANDEPERRE L J, LISKA M, AL-TABBAA A. Hydration and mechanical properties of magnesia, pulverized fuel ash, and Portland cement blends [J]. Journal of Materials in Civil Engineering, 2008, 20(5): 375-383.
    [11] YANG Y, RUAN S Q, WU S F, et al. Biocarbonation of reactive magnesia for soil improvement [J]. Acta Geotechnica, 2021, 16(4): 1113-1125.
    [12] DUNG N T, HOANG T, YANG E H, et al. New frontiers in sustainable cements: Improving the performance of carbonated reactive MgO concrete via microbial carbonation process [J]. Construction and Building Materials, 2022, 356: 129243.
    [13] WANG D L, TANG C S, PAN X H, et al. Construction and demolition waste stabilization through a bio-carbonation of reactive magnesia cement for underwater engineering [J]. Construction and Building Materials, 2022, 335: 127458.
    [14] 黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306, 3316.HUANG T, FANG X W, ZHANG W, et al. Experimental study on solidified loess by microbes and reactive magnesium oxide [J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306, 3316. (in Chinese)
    [15] 陈哲, 方祥位, 刘汉龙, 等. 氧化镁掺量对氧化镁微生物固化电解锰废渣影响研究[J]. 岩石力学与工程学报, 2020, 39(Sup2): 3687-3695.CHEN Z, FANG X W, LIU H L, et al. Influence of MgO content on solidified electrolytic manganese residue with MgO and microbe[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup2): 3687-3695. (in Chinese)
    [16] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique [J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
    [17] SHU S A, YAN B Y, GE B, et al. Factors affecting soybean crude urease extraction and biocementation via enzyme-induced carbonate precipitation (EICP) for soil improvement [J]. Energies, 2022, 15(15): 5566.
    [18] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement [D]. Perth: Murdoch University, 2004.
    [19] GAO Y F, HE J, TANG X Y, et al. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil [J]. Soils and Foundations, 2019, 59(5): 1631-1637.
    [20] 吴林玉, 缪林昌, 孙潇昊, 等. 植物源脲酶诱导碳酸钙固化砂土试验研究[J]. 岩土工程学报, 2020, 42(4): 714-720.WU L Y, MIAO L C, SUN X H, et al. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720. (in Chinese)
    [21] FRANKENBERGER W T, BINGHAM F T. Influence of salinity on soil enzyme activities [J]. Soil Science Society of America Journal, 1982, 46(6): 1173-1177.
    [22] BENNION B J, DAGGETT V. The molecular basis for the chemical denaturation of proteins by urea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5142-5147.
    [23] WEN K J, LI Y, AMINI F, et al. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate [J]. Acta Geotechnica, 2020, 15(1): 17-27.
    [24] LIN H, SULEIMAN M T, BROWN D G. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP) [J]. Soils and Foundations, 2020, 60(4): 944-961.
    [25] 张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.ZHANG Q, YE W M, LIU Z R, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2022, 43(2): 345-357. (in Chinese)
    [26] IVANOV V, CHU J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 139-153.
    [27] ZHANG H N, SHEN C, XI P S, et al. Study on effect of the activated magnesia carbonized building blocks based on the content of fly ash [J]. Construction and Building Materials, 2018, 185: 609-616.
    [28] KUMAR S, YANG E H, UNLUER C. Investigation of chloride penetration in carbonated reactive magnesia cement mixes exposed to cyclic wetting-drying [J]. Construction and Building Materials, 2021, 284: 122837.
    [29] HARRISON A J W, FCPA B S B E. TecEco cement concretes-abatement, sequestration and waste utilization in the built environment [C]//Proceedings of the TecEco Pty Ltd Conference, 2006.
    [30] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581.QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates [J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581. (in Chinese)
    [31] YI Y L, LU K W, LIU S Y, et al. Property changes of reactive magnesia-stabilized soil subjected to forced carbonation [J]. Canadian Geotechnical Journal, 2016, 53(2): 314-325.
    [32] HARRISON A J W, FCPA B S B E. TecEco eco-cement masonry product update-Carbonation Sequestration [C]//Proceedings of the 10th Canadian Masonry Conference Banff, Alberta, Canada, F, 2005.
    [33] DE SILVA P, BUCEA L, SIRIVIVATNANON V. Chemical, microstructural and strength development of calcium and magnesium carbonate binders [J]. Cement and Concrete Research, 2009, 39(5): 460-465.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何稼,屈思源,杭磊,黄安国.生物酶辅助氧化镁碳化过程砂土加固试验研究[J].土木与环境工程学报(中英文),2024,46(5):101-108. HE Jia, QU Siyuan, HANG Lei, HUANG Anguo. Experimental study on enzyme enhanced magnesia carbonation process for soil stabilization[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(5):101-108.10.11835/j. issn.2096-6717.2023.119

复制
分享
文章指标
  • 点击次数:233
  • 下载次数: 308
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-19
  • 在线发布日期: 2024-07-24
文章二维码