基于RA-AF特征的橡胶自密实混凝土裂缝扩展研究
CSTR:
作者:
作者单位:

1.河海大学 土木与交通学院,南京 210098;2.浙江交工集团股份有限公司,杭州 310051

作者简介:

石振祥(1999- ),男,主要从事混凝土损伤机理研究,E-mail:s923335190@163.com。
SHI Zhenxiang (1985- ), main research interest: concrete damage mechanism, E-mail: s923335190@163.com.

通讯作者:

陈徐东(通信作者),男,教授,博士生导师,E-mail:cxdong1985@163.com。

中图分类号:

TU528.07

基金项目:

国家重点研发计划(2021YFB2600200);国家自然科学基金(51979090);国家重点实验室开放基金(2019CEM002)


Study on crack propagation of rubber self-compacting concrete based on RA-AF characteristics
Author:
Affiliation:

1.College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, P. R. China;2.Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310051, P. R. China

Fund Project:

National Key R & D Program of China (No. 2021YFB2600200); National Natural Science Foundation of China (No. 51979090); Open Foundation of State Key Laboratory of Science and Technology (No. 2019CEM002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [4]
  • | | |
  • 文章评论
    摘要:

    为探究橡胶自密实混凝土断裂扩展模式,结合声发射RA-AF特征和高斯混合模型(GMM),利用带预制裂缝的半圆盘弯曲试件进行三点弯曲试验,选取橡胶掺量(0%、10%、20%、30%)及跨径比(0.45、0.54、0.72)为试验变量,分析橡胶自密实混凝土裂缝开展种类及变化规律。结果表明:橡胶掺量为20%时,橡胶自密实混凝土表现出较好的工作性能;橡胶掺量增加,拉伸断裂声发射事件占比增大,说明裂缝向Ⅰ型拉伸裂缝发展,并且裂缝发展具有连续的特点;增大跨径比会导致试件承载能力下降,但相同加载阶段其损伤程度逐渐降低,试件内部的断裂模式发生变化,跨径比为0.54时试件表现出较好的工作性能;GMM法显示,拉伸裂缝与剪切裂缝并非简单地以直线作为分界,而是在某些区域内共同存在,GMM法能更为合理地表述不同工况下拉伸断裂事件与剪切断裂事件发生比例的变化规律。

    Abstract:

    In this paper, in order to explore the fracture propagation mode of rubber self-compacting concrete, combined with RA-AF characteristics and Gaussian mixture model, three-point bending test was carried out on semi-circular bending specimens with prefabricated cracks. Rubber content (0 %, 10 %, 20 %, 30 %) and span ratio (0.45, 0.54, 0.72) were selected as test variables to analyze the crack mode and variation of rubber self-compacting concrete. The results show that when the rubber content is 20 %, the rubber self-compacting concrete shows better working performance. With the increase of rubber content, the proportion of tensile cracking AE events increases, indicating that the cracking mode transform into type Ⅰ tensile cracks, and the cracks are continuous. The increase of the span ratio will lead to the decrease of the bearing capacity of the specimen, but the damage degree gradually decreases at the same loading stage, and the fracture mode inside the specimen changes. When the span ratio is 0.54, the specimen shows better working performance. The GMM method shows that the tensile crack AE and the shear crack AE are not simply divided by a straight line, but coexist in some areas. The GMM method can more reasonably describe the variation of the proportion of tensile crack AE events and shear crack AE events under different working conditions.

    参考文献
    [1] GIRSKAS G, NAGROCKIEN? D. Crushed rubber waste impact of concrete basic properties [J]. Construction and Building Materials, 2017, 140: 36-42.
    [2] 徐颖, 卜静武, 刘雨夕, 等. 循环荷载下橡胶混凝土的断裂特性[J]. 土木与环境工程学报(中英文), 2022(1): 142-148.XU Y, BU J W, LIU Y X, et al. Fracture behaviors of rubber concrete under cyclic loading [J]. Journal of Civil and Environmental Engineering, 2022(1): 142-148. (in Chinese)
    [3] LI Y, LI Y Q. Experimental study on performance of rubber particle and steel fiber composite toughening concrete [J]. Construction and Building Materials, 2017, 146: 267-275.
    [4] 赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(7): 2359-2369.ZHAO Q H, DONG S, ZHU H. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/concrete subjected to uniaxial compression [J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369. (in Chinese)
    [5] KARIMIPOUR A, GHALEHNOVI M, DE BRITO J. RETRACTED: Mechanical and durability properties of steel fibre-reinforced rubberised concrete [J]. Construction and Building Materials, 2020, 257: 119463.
    [6] 龙广成, 李宁, 薛逸骅, 等. 冲击荷载作用下掺橡胶颗粒自密实混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(8): 1081-1090.LONG G C, LI N, XUE Y H, et al. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load [J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1081-1090. (in Chinese)
    [7] 冯明扬, 刘保东, 张敏强, 等. 外包橡胶混凝土覆层对梁式桥墩防撞性能影响的试验研究[J]. 振动与冲击, 2020, 39(2): 269-274.FENG M Y, LIU B D, ZHANG M Q, et al. Experimental study on the anti-collision performance of beam bridge piers with wrapped crumb rubber concrete layers [J]. Journal of Vibration and Shock, 2020, 39(2): 269-274. (in Chinese)
    [8] 杨荣周, 徐颖, 陈佩圆, 等. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.YANG R Z, XU Y, CHEN P Y, et al. Experimental study on dynamic mechanics, energy characteristics, and failure mechanism of rubber cement mortar under SHPB splitting test [J]. Materials Review, 2021, 35(10): 10062-10072. (in Chinese)
    [9] BIDECI A, ?ZTüRK H, BIDECI ? S, et al. Fracture energy and mechanical characteristics of self-compacting concretes including waste bladder tyre [J]. Construction and Building Materials, 2017, 149: 669-678.
    [10] 龙广成, 马昆林, XIE X, 等. 橡胶集料对混凝土抗压强度的降低效应[J]. 建筑材料学报, 2013, 16(5): 758-762.LONG G C, MA K L, XIE X, et al. Effect of rubber aggregate on reduction of compressive strength of concrete [J]. Journal of Building Materials, 2013, 16(5): 758-762. (in Chinese)
    [11] ASLANI F, MA G W, WAN D L Y, et al. Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete [J]. Journal of Cleaner Production, 2018, 172: 1835-1847.
    [12] 李双喜, 魏昆仑, 姜春萌. 玄武岩纤维橡胶混凝土的抗冲磨性能[J/OL]. 土木与环境工程学报(中英文). https://kns.cnki.net/kcms/detail/50.1218.TU.20220522. 1809.004.html.LI S X, WEI K L, JIANG C M. Abrasion resistance of basalt fiber rubber concrete [J/OL]. Journal of Civil and Environmental Engineering. https://kns.cnki.net/kcms/detail/50.1218.TU.20220522.1809.004.html.(in Chinese)
    [13] 傅强, 牛获涛, 谢友均, 等. 橡胶集料自密实混凝土的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2017, 20(3): 359-365.FU Q, NIU D T, XIE Y J, et al. Sulfate erosion resistance of rubberized self-compacting concrete [J]. Journal of Building Materials, 2017, 20(3): 359-365. (in Chinese)
    [14] 薛刚, 张宪法, 曹美玲. 考虑温度效应的橡胶混凝土阻尼耗能性能试验研究[J]. 振动与冲击, 2020, 39(19): 94-100.XUE G, ZHANG X F, CAO M L. Tests for damping energy-dissipation performance of rubber concrete considering temperature effect [J]. Journal of Vibration and Shock, 2020, 39(19): 94-100. (in Chinese)
    [15] 陈徐东, 黄业博, 陈晨. 橡胶自密实混凝土断裂性能及声发射特征[J]. 建筑材料学报, 2021, 24(4): 758-765.CHEN X D, HUANG Y B, CHEN C. Fracture properties and acoustic emission characteristics of rubber self-compacting concrete [J]. Journal of Building Materials, 2021, 24(4): 758-765. (in Chinese)
    [16] 陈徐东, 王佳佳, 田华轩. 橡胶自密实混凝土疲劳断裂全过程声发射特征辨识参量试验研究[J]. 振动与冲击, 2021, 40(15): 129-136.CHEN X D, WANG J J, TIAN H X. Tests for acoustic emission characteristic recognition parameters of rubber self-compacting concrete in fatigue fracture process [J]. Journal of Vibration and Shock, 2021, 40(15): 129-136. (in Chinese)
    [17] 张盛, 王龙飞, 常旭, 等. 中心直裂纹半圆盘试样的石灰岩断裂韧度尺寸效应试验研究[J]. 岩土力学, 2019, 40(5): 1740-1749, 1760.ZHANG S, WANG L F, CHANG X, et al. Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749, 1760. (in Chinese)
    [18] 吴金荣, 崔善成, 李飞, 等. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.WU J R, CUI S C, LI F, et al. Study on low temperature crack resistance of coal gangue powder/polyester fiber asphalt mixture [J]. Materials Reports, 2021, 35(6): 6078-6085. (in Chinese)
    [19] 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1359-1370.LV Y C. Experimental study on loading rate effect of fracture toughness of layered shale [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1359-1370. (in Chinese)
    [20] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.GAN Y X, WU S C, REN Y, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332. (in Chinese)
    [21] 吴顺川, 甘一雄, 任义, 等. 基于RA与AF值的声发射指标在隧道监测中的可行性[J]. 工程科学学报, 2020, 42(6): 723-730.WU S C, GAN Y X, REN Y, et al. Feasibility research of AE monitoring index in tunnel based on RA and AF [J]. Chinese Journal of Engineering, 2020, 42(6): 723-730. (in Chinese)
    [22] 周逸飞, 朱星, 刘文德. 基于声发射和高斯混合模型的灰岩破裂特征识别研究[J]. 水利水电技术, 2019, 50(11): 131-140.ZHOU Y F, ZHU X, LIU W D. Identification of cracking characteristics of limestone under uniaxial compression condition using acoustic emission and GMM [J]. Water Resources and Hydropower Engineering, 2019, 50(11): 131-140. (in Chinese)
    [23] 陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州: 浙江大学, 2018.CHEN Z G. Damage identification and deterioration evaluation of reinforced concrete based on acoustic emission technology [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [24] 陈飞, 张林艳, 封基良, 等. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(Sup2): 127-137.CHEN F, ZHANG L Y, FENG J L, et al. Research progress on test methods of asphalt mixture’s low-temperature anti-cracking performance [J]. Materials Review, 2021, 35(Sup2): 127-137. (in Chinese)
    [25] 吴顺川, 孙伟, 刘洋, 等. Ⅰ型断裂韧度模拟方法及细观影响因素研究[J]. 岩土力学, 2020, 41(8): 2536-2546.WU S C, SUN W, LIU Y, et al. Study on simulation method of mode Ⅰ fracture toughness and its meso-influencing factors [J]. Rock and Soil Mechanics, 2020, 41(8): 2536-2546. (in Chinese)
    [26] 崔正龙, 孙万吉, 费海超, 等. 碳化高温后再生混凝土受压声发射特性与损伤演化[J]. 土木与环境工程学报(中英文), 2024,46(4):175-185.CUI Z L, SUN W J, FEI H C, et al. Acoustic emission characteristics and damage evolution of recycled concrete after carbonization at high temperature under axial compression [J]. Journal of Civil and Environmental Engineering, 2024,46(4):175-185. (in Chinese)
    [27] 郑泓, 段忠东. 考虑非线性环境因素影响的结构损伤预警方法研究[J]. 振动工程学报, 2021, 34(6): 1101-1111.ZHENG H, DUAN Z D. Structural damage alert with consideration of the nonlinear environmental effects [J]. Journal of Vibration Engineering, 2021, 34(6): 1101-1111. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石振祥,陈徐东,宁英杰,田华轩.基于RA-AF特征的橡胶自密实混凝土裂缝扩展研究[J].土木与环境工程学报(中英文),2024,46(5):175-183. SHI Zhenxiang, CHEN Xudong, NING Yingjie, TIAN Huaxuan. Study on crack propagation of rubber self-compacting concrete based on RA-AF characteristics[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(5):175-183.10.11835/j. issn.2096-6717.2023.048

复制
分享
文章指标
  • 点击次数:155
  • 下载次数: 302
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-13
  • 在线发布日期: 2024-07-24
文章二维码