群体智能算法在路面参数反分析中的适用性及优选策略
CSTR:
作者:
作者单位:

1.广西交通设计集团有限公司,南宁 530029;2.长沙理工大学 交通运输工程学院,长沙 410114

作者简介:

杨森顺(1977- ),男,高级工程师,主要从事公路勘察设计研究,E-mail:23172392@qq.com。
YANG Senshun (1977- ), senior engineer, main research interests: highway survey and design, E-mail: 23172392@qq.com.

通讯作者:

范海山(通信作者),男,博士生,E-mail:fanhaishan@stu.csust.edu.cn。

中图分类号:

U412.6

基金项目:

国家自然科学基金(52025085)


The applicability and optimization strategy of swarm intelligence algorithm in back-calculation of pavement structural parameters
Author:
Affiliation:

1.Guangxi Communications Design Group Co., Ltd., Nanning 530029, P. R. China;2.School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 52025085)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着群体智能算法在路面参数反演中的成功应用,复杂多元非线性优化难题得以解决,但算法的选择仍然是路面参数反分析问题中亟待解决的难题。针对路面参数反分析中模型复杂、反演参数众多、绝大多数运算时间消耗在正算程序上等问题,选择8种常见的群体智能算法,开展限定正算调用次数下算法性能相关研究,并以考虑材料横观各向同性以及层间接触状态的路面结构参数反演问题为例,对群体智能算法进行实际测试。结果表明:不同算法各具特点,其中,粒子群算法、遗传算法、头脑风暴算法、人工蜂群算法以及烟花算法在多峰问题上具有较好的适用性;萤火虫算法在解决最优解附近存在平缓区域的问题时具有较快的收敛速度;对于遗传算法,实数编码方式后期收敛速度较二进制编码方式有所提高,但对于多峰问题的搜索能力有所下降;鱼群算法、混合蛙跳算法仅有在较大正算调用次数下才有较好的寻优能力。对于路面参数反演问题,从弯沉曲线匹配上看,粒子群算法、遗传算法、头脑风暴算法以及萤火虫算法均有较好的反演结果;而从相关系数上看,头脑风暴算法具有最佳反演结果。

    Abstract:

    With the successful application of swarm intelligence algorithms in the back analysis of pavement structural parameters, the problems of complex multivariate nonlinear optimization have been solved, while how to choose an appropriate algorithm is always the urgent problem in the back analysis of pavement structural parameters. In view of the characteristics of the back analysis of pavement structural parameters,such as complex models, numerous inversion parameters, and quite time-consuming forward calculation procedures, eight common swarm intelligence algorithms are selected in this paper. Related researches on the performance of the algorithms under the limited number of forward calculation calls are carried out. In this paper, the swarm intelligence algorithm is further tested by taking the inversion problem of the pavement structure parameters considering the material transverse isotropy and the contact state between layers as an example. The research results show that different algorithms have their own characteristics. Among them, particle swarm optimization (PSO), genetic algorithm (GA), brain storm optimization (BSO), artificial bee colony (ABC) and fireworks algorithm (FWA) work better in multi-peak problems. The firefly algorithm (FA) has a faster rate of convergence when solving the problem of a flat area near the optimal solution. For genetic algorithms , the later rate of convergence of the real number coding method is higher than that of the binary coding method, but the search ability for multi-peak problems is weaker. Artificial fish-school algorithm (AFA) and shuffled frog leaping algorithm (SLA) have better optimization ability only under a larger number of forward calculation calls. For inversion of pavement structure parameters, PSO, GA, BSO and FA have good inversion results in deflection curve matching, while BSO can get the best inversion result in the view of correlation coefficient.

    参考文献
    相似文献
    引证文献
引用本文

杨森顺,邓尚瑛,范海山,张军辉.群体智能算法在路面参数反分析中的适用性及优选策略[J].土木与环境工程学报(中英文),2024,46(5):191-203. YANG Senshun, DENG Shangying, FAN Haishan, ZHANG Junhui. The applicability and optimization strategy of swarm intelligence algorithm in back-calculation of pavement structural parameters[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(5):191-203.10.11835/j. issn.2096-6717.2023.023

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-24
  • 出版日期:
文章二维码