循环荷载下软黏土阻尼比特性及其简化计算方法
CSTR:
作者:
作者单位:

1.东南大学 交通学院,南京 211189;2.华设设计集团,南京 210014;3.南京工业大学 交通运输工程学院,南京 211816;4.北京中煤矿山工程有限公司,北京 100013

作者简介:

魏子航(1997- ),男,主要从事地基动力特性研究,E-mail: 220194495@seu.edu.cn。
WEI Zihang (1997- ), main research interest: dynamic characteristics of foundation, E-mail: 220194495@seu.edu.cn.

通讯作者:

邓永锋(通信作者),男,教授,博士生导师,E-mail:noden@seu.edu.cn。

中图分类号:

TU435

基金项目:

国家自然科学基金(51378117)


Damping ratio characteristics and simplified calculation method of soft clay under metro operation cyclic loading
Author:
Affiliation:

1.School of Transportation, Southeast University, Nanjing 211189, P. R. China;2.China Design Group Co., Ltd, Nanjing 210014, P. R. China;3.College of Transportation Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;4.CCTEG Beijing China Coal Mine Engineering Co., Ltd., Beijing 100013

Fund Project:

National Natural Science Foundation of China (No. 51378117)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土体的阻尼比是土层动力分析和评价必不可少的重要动力性能参数,但滞回曲线具有多样性和复杂性,利用规范法计算阻尼比时数据量过多导致数据的筛选和整理困难,适当地对滞回曲线进行简化有助于快速处理和分析试验数据。为研究南京地区长江漫滩淤泥质粉质黏土在地铁列车循环荷载作用下阻尼比的变化和特性,对土体进行动三轴试验,分析土体的阻尼比在不同固结围压和动荷载幅值下的变化过程,并根据土体动应力-应变滞回曲线的几何特征和循环荷载的物理意义,采用多个循环次数作为一个代表性循环单元的思路对阻尼比进行简化计算。结果表明:土体的阻尼比随着动应变的增加呈快速增长—缓慢增长—保持平稳的3阶段发展趋势;随着固结围压的增加,土体的阻尼比逐渐减小;随着动荷载幅值的增大,土体的阻尼比增加。简化方法中,代表性循环单元内循环次数越多,计算得到的阻尼比规范法所得数值越小,在精度合适的情况下,可以作为阻尼比计算的实用方法,以减少计算时的数据处理及计算量。

    Abstract:

    The damping ratio of soil is an essential and important dynamic parameter in soil dynamic analysis and evaluation. For the diversity and complexity of the hysteretic curve, it is difficult to calculate the damping ratio by the standard method for the excessive amount of data. The simplification of the hysteretic curve is helpful to process and analyze the test data quickly. To investigate the characteristics of the damping ratio of muddy silty clay in the Yangtze River floodplain in Nanjing under the cyclic load of the subway train, the triaxial dynamic test was carried out, and the damping ratio under different confining pressures and dynamic amplitudes was analyzed. For the geometric characteristics of the stress-strain hysteretic curves and the physical significance of the cyclic loading, the calculation method is simplified by assembling the hysteresis cycles as a group. The results show that with the increase of dynamic strain, the damping ratio shows a three-stage trend, i.e., rapid, slow and stable growth. With the increase of confining pressure, the damping ratio decreases gradually. When dynamic amplitude increases, the ratio also increases. In the simplified method, the greater the number of cycles in the representative cycle element, the smaller the calculated damping value compared with the standard method. Under the condition of appropriate accuracy, it can be used as a practical method to calculate the damping ratio, so as to reduce the amount of data processing and calculation.

    参考文献
    [1] DAS B M, LUO Z. Principles of soil dynamics [M]. 3rd ed. Stanford: Cengage Learning,2016.
    [2] KOKUSHO T. Cyclic triaxial test of dynamic soil properties for wide strain range [J]. Soils and Foundations, 1980, 20(2): 45-60.
    [3] KUMAR S S, KRISHNA A M, DEY A. Evaluation of dynamic properties of sandy soil at high cyclic strains [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 157-167.
    [4] 刘保健,周加林. 土阻尼比的滞后角测试法[J]. 大坝观测与土工测试, 1995(4): 37-40.LIU B J, ZHOU J L. Lag angle test method of soil damping ratio [J]. Dam Observation and Geotechnical Tests, 1995(4): 37-40. (in Chinese)
    [5] 罗飞, 赵淑萍, 马巍, 等. 冻结黏土的动力学参数确定方法研究[J]. 冰川冻土, 2016, 38(5): 1340-1345.LUO F, ZHAO S P, MA W, et al. Study of determining the dynamic parameters of frozen clay [J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1340-1345. (in Chinese)
    [6] 梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376, 1386.LIANG K, CHEN G X, HE Y, et al. An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376, 1386. (in Chinese)
    [7] 魏新江, 庄家煌, 丁智, 等. 地铁循环荷载作用下冻融土滞回曲线及阻尼比特性研究[J]. 岩石力学与工程学报, 2019, 38(10): 2092-2102.WEI X J, ZHUANG J H, DING Z, et al. Research on the characteristics of hysteretic curves and damping ratio of frozen-thawed soils under cyclic subway loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2092-2102. (in Chinese)
    [8] 刘超, 屈俊童, 段自侠, 等. 洱海泥炭质土滞回曲线形态特征的定量研究[J]. 科学技术与工程, 2021, 21(2): 688-693.LIU C, QU J T, DUAN Z X, et al. Quantitative research on morphological characteristics of hysteretic curves of peaty soil in Erhai [J]. Science Technology and Engineering, 2021, 21(2): 688-693. (in Chinese)
    [9] 庄心善, 王俊翔, 李凯, 等. 风化砂改良膨胀土的滞回曲线特征对比研究[J]. 岩石力学与工程学报, 2019, 38(Sup 2): 3709-3716.ZHUANG X S, WANG J X, LI K, et al. Comparative study on characteristic of hysteretic curves of expansive soil improved by weathered sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 2): 3709-3716. (in Chinese)
    [10] 庄心善, 赵汉文, 王俊翔, 等. 循环荷载下重塑弱膨胀土滞回曲线形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.ZHUANG X S, ZHAO H W, WANG J X, et al. Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854. (in Chinese)
    [11] 焦贵德, 赵淑萍, 马巍, 等. 循环荷载下冻土的滞回圈演化规律[J]. 岩土工程学报, 2013, 35(7): 1343-1349.JIAO G D, ZHAO S P, MA W, et al. Evolution laws of hysteresis loops of frozen soil under cyclic loading [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1343-1349. (in Chinese)
    [12] 李玥. 长期循环荷载下初始静剪应力对粉砂土累积变形的影响[J]. 水科学与工程技术, 2021(3): 8-12.LI Y. Effect of initial static shear stress on cumulative deformation of silty sand under long-term cyclic loading [J]. Water Sciences and Engineering Technology, 2021(3): 8-12. (in Chinese)
    [13] 郭林, 蔡袁强, 王军, 等. 长期循环荷载作用下温州结构性软黏土的应变特性研究[J]. 岩土工程学报, 2012, 34(12): 2249-2254.GUO L, CAI Y Q, WANG J, et al. Long-term cyclic strain behavior of Wenzhou structural soft clay [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2249-2254. (in Chinese)
    [14] 宋金良, 刘文程, 陈章毅, 等. 珠江口海洋原结构软土滞回曲线特征研究[J]. 工程勘察, 2015, 43(4): 7-11, 25.SONG J L, LIU W C, CHEN Z Y, et al. Research on the characteristics of hysteresis curves of marine soft soil with the original structure in Pearl River Estuary [J]. Geotechnical Investigation & Surveying, 2015, 43(4): 7-11, 25. (in Chinese)
    [15] 陈伟, 孔令伟, 朱建群. 一种土的阻尼比近似计算方法[J]. 岩土力学, 2007, 28(Sup1): 789-791.CHEN W, KONG L W, ZHU J Q. A simple method to approximately determine the damping ratio of soils [J]. Rock and Soil Mechanics, 2007, 28(Sup1): 789-791. (in Chinese)
    [16] 宋东松, 冯震, 金红山, 等. 确定砂土动剪切模量和阻尼比的方法对比[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1366-1380.SONG D S, FENG Z, JIN H S, et al. Comparison of methods for determining sand dynamic shear modulus and damping ratio [J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1366-1380. (in Chinese)
    [17] 董正方, 翟鹏飞, 曾繁凯, 等. 黄泛区粉砂土动剪切模量和阻尼比试验研究[J]. 河南大学学报(自然科学版), 2020, 50(3): 332-340.DONG Z F, ZHAI P F, ZENG F K, et al. Experimental study on dynamic shear modulus and damping ratio of silty soil in the Yellow River flooded area [J]. Journal of Henan University (Natural Science), 2020, 50(3): 332-340. (in Chinese)
    [18] 张向东, 任昆. 煤渣改良土的阻尼比影响因素试验研究[J]. 公路交通科技, 2019, 36(10): 43-51.ZHANG X D, REN K. Experimental study on influencing factors of damping ratio of cinder improved soil [J]. Journal of Highway and Transportation Research and Development, 2019, 36(10): 43-51. (in Chinese)
    [19] 杨兵明, 刘保国. 地铁列车循环荷载下软土地区盾构隧道长期沉降分析[J]. 中国铁道科学, 2016, 37(3): 61-67.YANG B M, LIU B G. Analysis of long-term settlement of shield tunnel in soft soil area under cyclic loading of subway train [J]. China Railway Science, 2016, 37(3): 61-67. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏子航,朱义欢,王涛,邓永锋,庄海洋.循环荷载下软黏土阻尼比特性及其简化计算方法[J].土木与环境工程学报(中英文),2024,46(5):204-210. WEI Zihang, ZHU Yihuan, WANG Tao, DENG Yongfeng, ZHUANG Haiyang. Damping ratio characteristics and simplified calculation method of soft clay under metro operation cyclic loading[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(5):204-210.10.11835/j. issn.2096-6717.2022.073

复制
分享
文章指标
  • 点击次数:309
  • 下载次数: 545
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-23
  • 在线发布日期: 2024-07-24
文章二维码