均质黏性土中静压沉桩桩土界面孔压增量及有效土压室内试验研究
作者:
作者单位:

1.青岛理工大学,土木工程学院,山东 青岛 266033;2.青岛理工大学,山东省高等学校蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033;3.华东建筑设计研究院有限公司 上海地下空间与工程设计研究院,上海 200002;4.同济大学 土木工程学院地下建筑与工程系,上海 200092

作者简介:

王永洪(1984- ),男,博士,主要从事土力学与桩基础工程、岩土工程测试研究,E-mail:hong7986@163.com。
WANG Yonghong (1984- ), PhD, main research interests: soil mechanics and pile foundation engineering, geotechnical engineering testing, E-mail: hong7986@163.com.

中图分类号:

TU473.1

基金项目:

国家重点研发计划(2021YFE0113400)


Experimental investigation on jacked pile-sinking induced pore pressure and effective radial stress at pile-clayey soil interface
Author:
Affiliation:

1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong,P. R. China;2.Collaborative Innovation Center for Engineering Construction and Safety of Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China;3.Shanghai Underground Space Engineering Design & Research Institute, East China Architecture Design & Research Institute Co., Ltd., Shanghai 200002, P. R. China;4.Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China

Fund Project:

National Key Research and Development Plan (No. 2021YFE0113400)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    研究饱和黏性土中静压沉桩引起的桩土界面孔压增量及有效径向应力的变化规律对工程实践具有重要意义。利用自制的大比例模型试验系统,通过双壁开口和闭口管桩,实现了开口和闭口桩桩身表面嵌入式安装微型测试元件,得到了考虑孔压增量的桩土界面有效径向应力的变化规律。研究结果表明:入土深度越大,桩土界面孔压增量及有效径向应力越大,闭口桩桩土界面超孔压大于开口桩;桩身上部桩土界面超孔压和有效径向应力小于桩身下部;同一入土深度,随着桩身h/L的增加,桩土界面土压力存在侧压力“退化”的现象;特定试验条件下,闭口和开口桩桩土界面超孔压与上覆有效土体自重比值最大值分别是61.2%和52.1%,桩土界面有效径向应力是超孔压的3.76~5.46倍。桩土界面超孔压和有效径向应力与桩身h/L位置有关。

    Abstract:

    It’s of great significance for engineering practice to study the variation of pore water pressure increment and effective radial stress at the pile-soil interface caused by jacked pile-sinking in saturated clayey soil. Embedded installation of micro test elements on the surface of the open and closed piles was realized. Then the effective radial stress of the pile-soil interface considering the increase of pore pressure was successfully obtained by using large-scale model test system and double-walled open and closed model pipe pile. The results show that the excess pore water pressure and effective radial stress of pile-soil interface increase with the embedded depth. The excess pore water pressure at the pile-soil interface of closed pile is greater than open pile. The excess pore water pressure and effective radial stress of upper part of pile is less than lower part of pile. At the same depth of penetration, with the increase of h/L of the pile body, there is a phenomenon of lateral pressure “degradation” in the soil pressure of the pile-soil interface. Under specific test conditions, the maximal ratio of excess pore water pressure of pile-soil interface and effective pressure of superimposed soil of open and closed pile are 61.2% and 52.1%. The effective radial stress of the pile-soil interface is 3.76-5.46 times of excess pore water pressure. Therefore, the change of excess pore water pressure and effective earth pressure of pile-soil interface are related to variation of pile locations of h/L at different penetration depths.

    参考文献
    [1] CARTER J P, RANDOLPH M F, WROTH C P. Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(4): 305-322.
    [2] SHEN S L, HAN J, ZHU H H, et al. Evaluation of a dike damaged by pile driving in soft clay [J]. Journal of Performance of Constructed Facilities, 2005, 19(4): 300-307.
    [3] 龚晓南, 李向红. 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17(4): 7-12.GONG X N, LI X H. Several mechanical problems in compacting effects of static piling in soft clay ground [J]. Engineering Mechanics, 2000, 17(4): 7-12. (in Chinese)
    [4] 张亚国, 李镜培. 静压沉桩引起的土体应力与孔压分布特征[J]. 上海交通大学学报, 2018, 52(12): 1587-1593.ZHANG Y G, LI J P. Distribution characteristics of stress and pore pressure induced by pile jacking [J]. Journal of Shanghai Jiao Tong University, 2018, 52(12): 1587-1593. (in Chinese)
    [5] TEHRANI F S, HAN F, SALGADO R, et al. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand [J]. Géotechnique, 2016, 66(5): 386-400.
    [6] 高子坤, 施建勇. 岩土抗拉模量值修正与桩土作用理论解答研究[J]. 力学学报, 2013, 45(5): 739-745.GAO Z K, SHI J Y. Research of constitutive relation correction of geotechnical materials and theoretical solution due to pile-soil interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 739-745. (in Chinese)
    [7] CAO L F, TEH C I, CHANG M F. Undrained cavity expansion in modified Cam clay I: Theoretical analysis [J]. Géotechnique, 2001, 51(4): 323-334.
    [8] 张鹏远, 白冰, 蒋思晨, 等. 饱和黏土中球(柱)孔瞬时扩张及超孔隙水压力研究[J]. 应用基础与工程科学学报, 2016, 24(1): 115-125.ZHANG P Y, BAI B, JIANG S C, et al. The study of expansion of spherical cavity and excess pore water pressure about the spherical(cylindrical) cavity in saturated clay [J]. Journal of Basic Science and Engineering, 2016, 24(1): 115-125. (in Chinese)
    [9] 李镜培, 方睿, 李林. 考虑土体三维强度特性的静压桩周超孔压解析及演变[J]. 岩石力学与工程学报, 2016, 35(4): 847-855.LI J P, FANG R, LI L. Variation of excess pore pressure around jacked piles considering the three-dimensional strength of soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 847-855. (in Chinese)
    [10] BALIGH M M. Strain path method [J]. Journal of Geotechnical Engineering, 1985, 111(9): 1108-1136.
    [11] WHITTLE A J, SUTABUTR T. Prediction of pile setup in clay [J]. Transportation Research Record, 1999, 1663(1): 33-40.
    [12] CHOPRA M B, DARGUSH G F. Finite-element analysis of time-dependent large-deformation problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(2): 101-130.
    [13] 鹿群, 龚晓南, 崔武文, 等. 饱和成层地基中静压单桩挤土效应的有限元模拟[J]. 岩土力学, 2008, 29(11): 3017-3020.LU Q, GONG X N, CUI W W, et al. Squeezing effects of jacked pile in layered soil [J]. Rock and Soil Mechanics, 2008, 29(11): 3017-3020. (in Chinese)
    [14] HWANG J H, LIANG N, CHEN C H. Ground response during pile driving [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11): 939-949.
    [15] PESTANA J M, HUNT C E, BRAY J D. Soil deformation and excess pore pressure field around a closed-ended pile [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 1-12.
    [16] YANG J, THAM L G, LEE P K, et al. Observed performance of long steel H-piles jacked into sandy soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1): 24-35.
    [17] 唐世栋, 何连生, 傅纵. 软土地基中单桩施工引起的超孔隙水压力[J]. 岩土力学, 2002, 23(6): 725-729, 732.TANG S D, HE L S, FU Z. Excess pore water pressure caused by an installing pile in soft foundation [J]. Rock and Soil Mechanics, 2002, 23(6): 725-729, 732. (in Chinese)
    [18] 张宇超, 陆烨. 基于模型试验的桩周土压力[J]. 上海大学学报(自然科学版), 2018, 24(2): 296-303.ZHANG Y C, LU Y. Soil pressure induced by pile driving based on model test [J]. Journal of Shanghai University (Natural Science Edition), 2018, 24(2): 296-303. (in Chinese)
    [19] 周火垚, 施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. 岩土力学, 2009, 30(11): 3291-3296.ZHOU H Y, SHI J Y. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay [J]. Rock and Soil Mechanics, 2009, 30(11): 3291-3296. (in Chinese)
    [20] 胡向前, 焦志斌, 李运辉. 打设排水板后饱和软黏土中打桩引起的孔隙水压力分布及消散规律[J]. 岩土力学, 2011, 32(12): 3733-3737.HU X Q, JIAO Z B, LI Y H. Distribution and dissipation laws of excess static pore water pressures induced by pile driving in saturated soft clay with driven plastic drainage plates [J]. Rock and Soil Mechanics, 2011, 32(12): 3733-3737. (in Chinese)
    [21] 张忠苗, 谢志专, 刘俊伟, 等. 淤质与粉质互层土中管桩沉桩过程的土压力[J]. 浙江大学学报(工学版), 2011, 45(8): 1430-1434, 1440.ZHANG Z M, XIE Z Z, LIU J W, et al. The earth pressure during pile driving in silty soil with mucky soil interbed [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8): 1430-1434, 1440. (in Chinese)
    [22] 李国维, 边圣川, 陆晓岑, 等. 软基路堤拓宽静压PHC管桩挤土效应现场试验[J]. 岩土力学, 2013, 34(4): 1089-1096.LI G W, BIAN S C, LU X C, et al. Field test on extruding soil caused of PHC pipe pile driving by static pressure for improving soft foundation of widened embankment [J]. Rock and Soil Mechanics, 2013, 34(4): 1089-1096. (in Chinese)
    [23] BOND A, JARDINE R. Shaft capacity of displacement piles in a high OCR clay [J]. Géotechnique, 1995, 45: 3-23.
    [24] BOND A J, JARDINE R J. Effects of installing displacement piles in a high OCR clay [J]. Géotechnique, 1991, 41(3): 341-363.
    [25] 王永洪, 张明义, 刘雪颖, 等. 基于桩土界面的静压桩沉桩效应与承载特性室内试验研究[J]. 建筑结构学报, 2021, 42(10): 157-165.WANG Y H, ZHANG M Y, LIU X Y, et al. Laboratory experimental study on pile jacking-in effects and capacity characteristics based on pile-soil interface [J]. Journal of Building Structures, 2021, 42(10): 157-165. (in Chinese)
    [26] 王永洪, 张明义, 刘雪颖, 等. 基于桩土界面应力测试的开闭口桩静力沉桩室内试验对比研究[J]. 中南大学学报(自然科学版), 2021, 52(2): 599-606.WANG Y H, ZHANG M Y, LIU X Y, et al. Laboratory test comparative study on open-close piles during jacked pile-jacking based on pile-soil interface stress measurement [J]. Journal of Central South University (Science and Technology), 2021, 52(2): 599-606. (in Chinese)
    [27] 王永洪, 张明义, 孙绍霞, 等. 不同直径单桩静压贯入力学特性模型试验研究[J]. 土木与环境工程学报(中英文), 2020, 42(1): 9-17.WANG Y H, ZHANG M Y, SUN S X, et al. Model test study on single piles with different diameters subjected to penetration mechanical characteristics of jacked pile [J]. Journal of Civil and Environmental Engineering, 2020, 42(1): 9-17. (in Chinese)
    [28] 土工试验方法标准: GB/T 50123—1999[S]. 北京: 中国计划出版社, 1999.Standard for soil test method: GB/T 50123—1999 [S]. Beijing: China Planning Press, 1999. (in Chinese)
    [29] 王育兴, 孙钧. 打桩施工对周围土性及孔隙水压力的影响[J]. 岩石力学与工程学报, 2004, 23(1): 153-158.WANG Y X, SUN J. Influence of pile driving on properties of soils around pile and pore water pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 153-158. (in Chinese)
    [30] LENANE B M. Experimental investigations of pile behaviour using instrumental field piles [D]. London: University of London,1992.
    [31] 李雨浓, LEHANE B M, 刘清秉. 黏土中静压沉桩离心模型[J]. 工程科学学报, 2018, 40(3): 285-292.LI Y N, LEHANE B M, LIU Q B. Centrifuge modeling of jacked pile in clay [J]. Chinese Journal of Engineering, 2018, 40(3): 285-292. (in Chinese)
    相似文献
    引证文献
引用本文

王永洪,徐泽强,张明义,张腾,银吉超,吴江斌,魏家斌.均质黏性土中静压沉桩桩土界面孔压增量及有效土压室内试验研究[J].土木与环境工程学报(中英文),2024,46(6):100-106. WANG Yonghong, XU Zeqiang, ZHANG Mingyi, ZHANG Teng, YIN Jichao, WU Jiangbin, WEI Jiabin. Experimental investigation on jacked pile-sinking induced pore pressure and effective radial stress at pile-clayey soil interface[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(6):100-106.10.11835/j. issn.2096-6717.2022.075

复制
分享
文章指标
  • 点击次数:66
  • 下载次数: 116
  • HTML阅读次数: 38
  • 引用次数: 0
历史
  • 收稿日期:2022-04-06
  • 在线发布日期: 2024-11-27
文章二维码