电化学介导的氨氮回收:原理、现状与展望
作者:
作者单位:

1.重庆大学 环境与生态学院,重庆 400045;2.中国石油大学 化学工程与环境学院,北京 102249

作者简介:

李依凡(1999- ),女,主要从事电化学水处理研究,E-mail:yifan_li_edu@qq.com。
LI Yifan (1999- ), main research interest: electrochemical-based water treatment, E-mail: yifan_li_edu@qq.com.

通讯作者:

韩乐(通信作者),男,博士,教授,E-mail:Lehan@cqu.edu.cn。

中图分类号:

X703.1

基金项目:

重庆市留学人员回国创业创新支持计划(CX2021121);国家重点研发计划(2022YFC3203402)


Electrochemically mediated ammonium nitrogen recovery: Principle, progress, and perspective
Author:
Affiliation:

1.School of Environment and Ecology, Chongqing University, Chongqing400045, P. R. China;2.School of Chemical Engineering and Environment, China University of Petroleum, Beijing102249, P. R. China

Fund Project:

Venture and Innovation Support Program for Chongqing Overseas Returnees (No. CX2021121); National Key R & D Program (No. 2022YFC3203402)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    当前的氮循环模式存在人工固氮/脱氮过程重复耗能、可持续性不佳的问题。针对氨氮的污染-资源双重属性特征,污水中氨氮的资源化处理技术亟须研发。在各种氨氮回收技术中,电化学技术具有反应快速、装备简单、操作便捷等优势,已经成为热门研究方向。综述电化学介导氨氮回收技术的研究与发展现状:围绕电化学系统中不同形态氨氮的迁移转化机制,主要介绍3种回收技术的主要原理,包括电驱迁移与界面吸附、阴极还原促进汽化和阳极氧化促进沉淀;进一步聚焦电极与膜材料对氨氮回收性能的强化作用,分析电容去离子与膜技术(基于阳离子交换膜、疏水透气膜、双级膜的工艺)的能效水平,指出多过程耦合的氨氮汽提技术在降低能耗与提升效率方面的良好前景;展望双碳背景下技术革新的内在需求,建议未来从系统高性能元件开发、能量削减与功能拓展/智慧化运行等方向推进电化学介导氨氮回收技术的高质量可持续发展。

    Abstract:

    Under the background of promoting environmental function quality and carbon peak and carbon neutrality, the hidden problems of repeated consumption and low sustainability in artificial nitrogen fixation/ nitrogen removal process come to prominence. Synthesizing the necessity and resource availability of ammonium-nitrogen in wastewater, research and development of ammonium-nitrogen resource recovery technology is receiving more and more attention in wastewater treatment. Among the existing techniques, electrochemical technology has become a hot research direction due to its advantages such as fast reaction, simple equipment, and convenient operation. In this paper, an overview of the research and development status of electrochemical-mediated ammonium recovery technology in recent years was reviewed. Focusing on the migration and conversion mechanism of different forms of ammonium-nitrogen in the electrochemical system, three main principles of recovery technology were introduced including electrochemical-driven migration and adsorption, cathode reaction-driven volatilization and anode reaction-driven precipitation. The enhancement effect of electrodes and membrane materials on the ammonium recovery performance was then highlighted and the energy efficiency of related processes including capacitive deionization and membrane-based processes (via cation-exchange membrane, gas-permeable membrane and bipolar membrane) was analyzed, leading to the conclusion that an integrated process toward ammonia recovery exhibits merits of low energy input and high removal/recovery efficiency. Finally, the inherent demand for technological innovation in a low-carbon background was discussed, the future efforts would hopefully be directed toward the development of high-performance system components, energy reduction, and functional expansion/smart operation to promote the high-quality and sustainable development of electrochemical-mediated ammonium recovery technology.

    参考文献
    [1] YU C Q, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China [J]. Nature, 2019, 567(7749): 516-520.
    [2] RIZZIOLI F, BERTASINI D, BOLZONELLA D, et al. A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector [J]. Separation and Purification Technology, 2023, 306: 122690.
    [3] CHEN T L, CHEN L H, LIN Y J, et al. Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review [J]. Journal of Cleaner Production, 2021, 309: 127369.
    [4] CHEN G H. Electrochemical technologies in wastewater treatment [J]. Separation and Purification Technology, 2004, 38(1): 11-41.
    [5] CRUZ H, LAW Y Y, GUEST J S, et al. Mainstream ammonium recovery to advance sustainable urban wastewater management [J]. Environmental Science & Technology, 2019, 53(19): 11066-11079.
    [6] GADEKAR S, PULLAMMANAPPALLIL P. Validation and applications of a chemical equilibrium model for struvite precipitation [J]. Environmental Modeling & Assessment, 2010, 15(3): 201-209.
    [7] SHU J C, WU H P, CHEN M J, et al. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation [J]. Water Research, 2019, 153: 229-238.
    [8] LIU B X, GIANNIS A, ZHANG J F, et al. Air stripping process for ammonia recovery from source-separated urine: Modeling and optimization [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(12): 2208-2217.
    [9] GU?TIN S, MARIN?EK-LOGAR R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent [J]. Process Safety and Environmental Protection, 2011, 89(1): 61-66.
    [10] ALHELAL I I, LOETSCHER L, SHARVELLE S, et al. Nitrogen recovery from anaerobic digestate via ammonia stripping and absorbing with a nitrified solution [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107826.
    [11] LIU Y, HE L F, DENG Y Y, et al. Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review [J]. Chemical Engineering Journal, 2022, 442: 136200.
    [12] LEDEZMA P, KUNTKE P, BUISMAN C J N, et al. Source-separated urine opens golden opportunities for microbial electrochemical technologies [J]. Trends in Biotechnology, 2015, 33(4): 214-220.
    [13] RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water [J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
    [14] XIANG S Y, LIU Y H, ZHANG G M, et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters [J]. World Journal of Microbiology & Biotechnology, 2020, 36(10): 144.
    [15] DU J X, WAITE T D, FENG J, et al. Coupled electrochemical methods for nitrogen and phosphorus recovery from wastewater: A review [J]. Environmental Chemistry Letters, 2023, 21(2): 885-909.
    [16] RODRIGUES M, SLEUTELS T, KUNTKE P, et al. Effects of current on the membrane and boundary layer selectivity in electrochemical systems designed for nutrient recovery [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9411-9418.
    [17] RATSOMA M S, POHO B L O, MAKGOPA K, et al. Application of nickel foam in electrochemical systems: A review [J]. Journal of Electronic Materials, 2023, 52(4): 2264-2291.
    [18] FANG K, GONG H, HE W Y, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization [J]. Chemical Engineering Journal, 2018, 348: 301-309.
    [19] SUN K G, TEBYETEKERWA M, WANG C, et al. Electrocapacitive deionization: Mechanisms, electrodes, and cell designs [J]. Advanced Functional Materials, 2023. doi: 10.1002/adfm.202213578.
    [20] CHEN T Q, XU L Q, WEI S, et al. Ammonia-rich solution production from coal gasification gray water using Chemical-free Flow-Electrode capacitive deionization coupled with a monovalent cation exchange membrane [J]. Chemical Engineering Journal, 2022, 433: 133780.
    [21] PASTUSHOK O, RAMASAMY D, SILLANP?? M, et al. Enhanced ammonium removal and recovery from municipal wastewater by asymmetric CDI cell equipped with oxygen functionalized carbon electrode [J]. Separation and Purification Technology, 2021, 274: 119064.
    [22] YU F, YANG Z Q, CHENG Y J, et al. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application [J]. Separation and Purification Technology, 2022, 281: 119870.
    [23] GENDEL Y, ROMMERSKIRCHEN A K E, DAVID O, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology [J]. Electrochemistry Communications, 2014, 46: 152-156.
    [24] ZHANG C Y, MA J X, SONG J K, et al. Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system [J]. Environmental Science & Technology, 2018, 52(24): 14275-14285.
    [25] KRUK D J, ELEKTOROWICZ M, OLESZKIEWICZ J A. Struvite precipitation and phosphorus removal using magnesium sacrificial anode [J]. Chemosphere, 2014, 101: 28-33.
    [26] TAN X, YU R T, YANG G, et al. Phosphate recovery and simultaneous nitrogen removal from urine by electrochemically induced struvite precipitation [J]. Environmental Science and Pollution Research International, 2021, 28(5): 5625-5636.
    [27] LI X W, ZHAO X, ZHOU X W, et al. Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite [J]. Journal of Cleaner Production, 2021, 292: 126039.
    [28] RODRIGUES M, PARADKAR A, SLEUTELS T, et al. Donnan Dialysis for scaling mitigation during electrochemical ammonium recovery from complex wastewater [J]. Water Research, 2021, 201: 117260.
    [29] YANG K, QIN M H. The application of cation exchange membranes in electrochemical systems for ammonia recovery from wastewater [J]. Membranes, 2021, 11(7): 494.
    [30] VECINO X, REIG M, GIBERT O, et al. Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer [J]. Chemosphere, 2020, 245: 125606.
    [31] KEDWELL K C, J?RGENSEN M K, QUIST-JENSEN C A, et al. Selective electrodialysis for simultaneous but separate phosphate and ammonium recovery [J]. Environmental Technology, 2021, 42(14): 2177-2186.
    [32] SBARDELLA L, BLANDIN G, FàBREGAS A, et al. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate [J]. Chemical Engineering Journal, 2022, 434: 134448.
    [33] BIAN Y H, CHEN X, LU L, et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization [J]. ACS Sustainable Chem Eng, 2019, 7(8): 7844-7850.
    [34] LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization [J]. Desalination, 2006, 196(1/2/3): 125-134.
    [35] BIESHEUVEL P M, VAN DER WAL A. Membrane capacitive deionization [J]. Journal of Membrane Science, 2010, 346(2): 256-262.
    [36] CHEN C, DAI Z N, LI Y F, et al. Fouling-free membrane stripping for ammonia recovery from real biogas slurry [J]. Water Research, 2023, 229: 119453.
    [37] LIU M J, NEO B S, TARPEH W A. Building an operational framework for selective nitrogen recovery via electrochemical stripping [J]. Water Research, 2020, 169: 115226.
    [38] LEI X H, SUGIURA N, FENG C P, et al. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification [J]. Journal of Hazardous Materials, 2007, 145(3): 391-397.
    [39] HOU D X, JASSBY D, NERENBERG R, et al. Hydrophobic gas transfer membranes for wastewater treatment and resource recovery [J]. Environmental Science & Technology, 2019, 53(20): 11618-11635.
    [40] KUNTKE P, ZAMORA P, SAAKES M, et al. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems [J]. Environmental Science: Water Research & Technology, 2016, 2(2): 261-265.
    [41] GONZALEZ-SALGADO I, GUIGUI C, SPERANDIO M. Transmembrane chemical absorption technology for ammonia recovery from wastewater: A critical review [J]. Chemical Engineering Journal, 2022, 444: 136491.
    [42] CHRISTIAENS M E R, UDERT K M, ARENDS J B A, et al. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants [J]. Water Research, 2019, 150: 349-357.
    [43] RODRIGUES M, LUND R, HEIJNE A TER, et al. Application of ammonium fertilizers recovered by an electrochemical system [J]. Resources Conservation and Recycling, 2022, 181: 106225.
    [44] LUO Y, LIU Y X, SHEN J N, et al. Application of bipolar membrane electrodialysis in environmental protection and resource recovery: A review [J]. Membranes, 2022, 12(9): 829.
    [45] VAN LINDEN N, BANDINU G L, VERMAAS D A, et al. Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production [J]. Journal of Cleaner Production, 2020, 259: 120788.
    [46] P?RNAM?E R, MAREEV S, NIKONENKO V, et al. Bipolar membranes: A review on principles, latest developments, and applications [J]. Journal of Membrane Science, 2021, 617: 118538.
    [47] LI Y J, WANG R Y, SHI S Y, et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: Experiments, modeling, and performance analysis [J]. Environmental Science & Technology, 2021, 55(21): 14886-14896.
    [48] CHEN T Y, BI J T, JI Z Y, et al. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review [J]. Water Research, 2022, 226: 119274.
    [49] RODRIGUES M, DE MATTOS T T, SLEUTELS T, et al. Minimal bipolar membrane cell configuration for scaling up ammonium recovery [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17359-17367.
    [50] RODRIGUES M, MOLENAAR S, BARBOSA J, et al. Effluent pH correlates with electrochemical nitrogen recovery efficiency at pilot scale operation [J]. Separation and Purification Technology, 2023, 306: 122602.
    [51] MOUSSA SBEN, MAURIN G, GABRIELLI C, et al. Electrochemical precipitation of struvite [J]. Electrochemical and Solid-State Letters, 2006, 9(6): C97.
    [52] DOYLE J D, PARSONS S A. Struvite formation, control and recovery [J]. Water Research, 2002, 36(16): 3925-3940.
    [53] QIN M H, HE Z. Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system [J]. Environmental Science & Technology Letters, 2014, 1(10): 437-441.
    [54] WANG L, GU K H, ZHANG Y H, et al. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition [J]. The Science of the Total Environment, 2022, 804: 150101.
    [55] KéKEDY-NAGY L, ENGLISH L, ANARI Z, et al. Electrochemical nutrient removal from natural wastewater sources and its impact on water quality [J]. Water Research, 2022, 210: 118001.
    [56] WARD A J, AROLA K, THOMPSON BREWSTER E, et al. Nutrient recovery from wastewater through pilot scale electrodialysis [J]. Water Research, 2018, 135: 57-65.
    [57] WANG D Z, LI T, YAN C M, et al. A novel bio-flocculation combined with electrodialysis process: Efficient removal of pollutants and sustainable resource recovery from swine wastewater [J]. Separation and Purification Technology, 2023, 304: 122330.
    [58] ZHANG C Y, MA J X, WAITE T D. Ammonia-rich solution production from wastewaters using chemical-free flow-electrode capacitive deionization [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6480-6485.
    [59] DESLOOVER J, WOLDEYOHANNIS A A, VERSTRAETE W, et al. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion [J]. Environmental Science & Technology, 2012, 46(21): 12209-12216.
    [60] GILDEMYN S, LUTHER A K, ANDERSEN S J, et al. Electrochemically and bioelectrochemically induced ammonium recovery [J]. Journal of Visualized Experiments: JoVE, 2015(95): 52405.
    [61] RODRíGUEZ ARREDONDO M, KUNTKE P, HEIJNE ATER, et al. Load ratio determines the ammonia recovery and energy input of an electrochemical system [J]. Water Research, 2017, 111: 330-337.
    [62] KUNTKE P, RODRíGUEZ ARREDONDO M, WIDYAKRISTI L, et al. Hydrogen gas recycling for energy efficient ammonia recovery in electrochemical systems [J]. Environmental Science & Technology, 2017, 51(5): 3110-3116.
    [63] RODRIGUES M, SLEUTELS T, KUNTKE P, et al. Exploiting Donnan Dialysis to enhance ammonia recovery in an electrochemical system [J]. Chemical Engineering Journal, 2020, 395: 125143.
    [64] FERRARI F, PIJUAN M T, MOLENAAR S, et al. Ammonia recovery from anaerobic digester centrate using onsite pilot scale bipolar membrane electrodialysis coupled to membrane stripping [J]. Water Research, 2022, 218: 118504.
    [65] 韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5):2106-2120.HAN J L, ZENG X J, WANG K H, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium [J]. Acta Materiae Compositae Sinica, 2022, 39(5):2106-2120. (in Chinese)
    [66] MU S, WANG S, LIANG S, et al. Effect of the relative degree of foulant “hydrophobicity” on membrane fouling [J]. Journal of Membrane Science, 2019, 570-571: 1-8.
    [67] HOU D X, IDDYA A, CHEN X, et al. Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery [J]. Environmental Science & Technology, 2018, 52(15): 8930-8938.
    [68] KIM K Y, MORENO-JIMENEZ D A, EFSTA-THIADIS H. Electrochemical ammonia recovery from anaerobic centrate using a nickel-functionalized activated carbon membrane electrode [J]. Environmental Science & Technology, 2021, 55(11): 7674-7680.
    [69] CHEN C, DONG T, HAN M Y, et al. Ammonium recovery from wastewater by Donnan Dialysis: A feasibility study [J]. Journal of Cleaner Production, 2020, 265: 121838.
    [70] CHEN C, HAN M Y, YAO J M, et al. Donnan dialysis-osmotic distillation (DD-OD) hybrid process for selective ammonium recovery driven by waste alkali [J]. Environmental Science & Technology, 2021, 55(10): 7015-7024.
    [71] DAI Z N, CHEN C, LI Y F, et al. Hybrid Donnan dialysis-electrodialysis for efficient ammonia recovery from anaerobic digester effluent [J]. Environmental Science and Ecotechnology, 2023, 15: 100255.
    [72] GEORG S, PUARI A T, HANANTYO M P G, et al. Low-energy ammonium recovery by a combined bio-electrochemical and electrochemical system[J]. Chemical Engineering Journal, 2023, 454(3): 140196.
    [73] BRILLAS E, SAULEDA R, CASADO J. Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode [J]. Journal of The Electrochemical Society, 1997, 144(7): 2374.
    [74] BOOPATHY R, SEKARAN G. Electrochemical treatment of reverse osmosis concentrate generated by the leather industry using a Cu-graphite electrode [J]. RSC Advances, 2014, 4(20): 9971-9979.
    [75] SHIRKOOHI M G, TYAGI R D, VANROLLE-GHEM P A, et al. Artificial intelligence techniques in electrochemical processes for water and wastewater treatment: A review [J]. Journal of Environmental Health Science & Engineering, 2022, 20(2): 1089-1109.
    [76] PIULEAC C G, RODRIGO M A, CA?IZARES P, et al. Ten steps modeling of electrolysis processes by using neural networks [J]. Environmental Modelling & Software, 2010, 25(1): 74-81.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李依凡,张淏泉,周鹭,阳春,孔繁鑫,韩乐.电化学介导的氨氮回收:原理、现状与展望[J].土木与环境工程学报(中英文),2024,46(6):203-212. LI Yifan, ZHANG Haoquan, ZHOU Lu, YANG Chun, KONG Fanxin, HAN Le. Electrochemically mediated ammonium nitrogen recovery: Principle, progress, and perspective[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2024,46(6):203-212.10.11835/j. issn.2096-6717.2023.049

复制
分享
文章指标
  • 点击次数:151
  • 下载次数: 172
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2023-03-20
  • 在线发布日期: 2024-11-27
文章二维码