磷石膏/木质素固化铅污染土的无侧限抗压强度
作者:
作者单位:

1.西北农林科技大学,水利与建筑工程学院,陕西 杨凌712100;2.西北农林科技大学,岩土工程研究所/特殊岩土博物馆,陕西 杨凌712100

作者简介:

赵之(1999- ),女,主要从事特殊土的工程性质及其改良技术研究,E-mail:zhaozhi19990123@163.com。
ZHAO Zhi (1999- ), main research interests: engineering properties of special soil and its improvement technology, E-mail: zhaozhi19990123@163.com.

通讯作者:

杨秀娟(通信作者),女,副教授,E-mail:ylinyu@163.com。

中图分类号:

TU411.6

基金项目:

国家自然科学基金(52079116、51579215);中央高校基本科研业务费(2452019062)


Unconfined compressive strength of phosphogypsum/lignin solidified lead contaminated soil
Author:
Affiliation:

1.College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling712100, Shaanxi, P. R. China;2.Geotechnical Engineering Institute/Special Geotechnical Museum, Northwest A & F University, Yangling712100, Shaanxi, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos. 52079116, 51579215); Fundamental Research Funds for Central Universities (No. 2452019062)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用工业固体废弃物磷石膏、木质素对人工配制铅污染土进行固化处理,通过无侧限抗压强度(UCS)试验探究固化剂掺量、养护龄期对不同程度铅污染土固化后应力-应变曲线、破坏形态及无侧限抗压强度的影响规律,对比分析两种固化剂的固化效果,并采用扫描电镜(SEM)试验分析土样固化前后的微观特性。试验结果表明,磷石膏、木质素均能增大固化土的无侧限抗压强度,减小破坏应变;固化土的无侧限抗压强度随磷石膏掺量增加呈持续上升趋势,随木质素掺量增加呈先上升后下降趋势;延长养护时间能有效提高固化土无侧限抗压强度。随固化剂掺量和养护龄期的增加,土体内部胶结水平提高,土样破坏形态从局部张裂逐渐转变为剪切破坏,呈现脆性破坏特征。两种固化剂固化土效果各有优劣,木质素对高浓度铅污染土的固化效果优于磷石膏,抵抗变形能力更好,而磷石膏短期内提升强度能力及对铅的固定效果更好。扫描电镜试验表明,固化剂可起到填充孔隙、胶结土颗粒的作用,水化产物在土体内形成致密结构,宏观表现为强度增强。

    Abstract:

    Industrial solid waste phosphogypsum and lignin were used to solidify the artificially formulated lead contaminated soil. Through the unconfined compressive strength (UCS) test, the effect of curing agent dosage and curing age on the stress-strain curve, failure pattern and UCS of the soil with different levels of lead contamination after solidification were investigated, and the curing effects of the two curing agents were compared and analyzed. The microscopic characteristics of soil samples before and after curing were analyzed by scanning electron microscopy (SEM) test. The results show that both phosphogypsum and lignin can increase the UCS of stabilized soil and reduce the failure strain. UCS of solidified soil increases continuously with the increase of phosphogypsum content, and increases first and then decreases with the increase of lignin content. Extended curing time can effectively improve the UCS of stabilized soil. With the increase of dosage and curing age, the internal cementation level of soil increases, and the failure pattern of soil sample gradually changes from local tension cracking to shear failure, showing brittle failure characteristics. The two curing agents have their own advantages and disadvantages in curing soil. Lignin is more effective than phosphogypsum in curing high concentration lead contaminated soil and has better resistance to deformation, while phosphogypsum has better ability to improve strength and fix lead in a short time. SEM tests show that the curing agent can fill the pores and cement soil particles, and the hydration products form a dense structure in the soil, which is macroscopically expressed as strength enhancement.

    参考文献
    [1] 冯亚松, 杜延军, 周实际, 等. 活化钢渣在固化稳定化工业重金属污染土中的应用[J]. 岩土工程学报, 2018, 40(Sup2): 112-116.FENG Y S, DU Y J, ZHOU S J, et al. Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup2): 112-116. (in Chinese)
    [2] 刘小琼. 我国污染场地修复的法律制度研究[D]. 江苏 徐州: 中国矿业大学, 2014.LIU X Q. Legal system about contaminated sites remediation in China [D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2014. (in Chinese)
    [3] YANG Z P, WANG Y, LI X Y, et al. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil [J]. Environmental Science and Pollution Research, 2021, 28(28): 37413-37423.
    [4] MOUEDHEN I, COUDERT L, BLAIS J F, et al. Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste [J]. Journal of Environmental Management, 2018, 209: 23-36.
    [5] WANG L, CHEN L, GUO B L, et al. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil [J]. Journal of Hazardous Materials, 2020, 400: 123317.
    [6] 李敏, 张然然, 田冰雪. 无机材料固化镉铅镍污染土的环境效应及失稳机制[J]. 土木与环境工程学报(中英文), 2024,46(4):202-210.LI M, ZHANG R R, TIAN B X. Environmental effects and instability mechanism of cadmium, lead and nickel contaminated soil solidified by inorganic materials [J]. Journal of Civil and Environmental Engineering, 2024,46(4):202-210.(in Chinese)
    [7] WANG Y G, HAN F L, MU J Q. Solidification/stabilization mechanism of Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) in fly ash based geopolymers [J]. Construction and Building Materials, 2018, 160: 818-827.
    [8] 刘松玉, 夏威夷, 魏明俐, 等. MC固化高浓度锌铅镉污染土的浸出和强度特性[J]. 东南大学学报(自然科学版), 2016, 46(Sup1): 51-56.LIU S Y, XIA W Y, WEI M L, et al. Leaching and strength properties of Zn, Pb and Cd contaminated soils stabilized by MC [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(Sup1): 51-56. (in Chinese)
    [9] 陈学军, 丁翔, 徐科宇. 木质素及其衍生物对土性能和机理的研究进展综述[J]. 土工基础, 2021, 35(2): 156-160.CHEN X J, DING X, XU K Y. State-of-the-art review of lignin and its derivatives on the soil properties modification [J]. Soil Engineering and Foundation, 2021, 35(2): 156-160. (in Chinese)
    [10] KUMAR S, DUTTA R K, MOHANTY B. Engineering properties of bentonite stabilized with lime and phosphogypsum [J]. Slovak Journal of Civil Engineering, 2014, 22(4): 35-44.
    [11] FENG Y S, DU Y J, ZHOU A N, et al. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder [J]. The Science of the Total Environment, 2021, 765: 142778.
    [12] 丁建文, 刘铁平, 曹玉鹏, 等. 高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013, 35(Sup2): 55-60.DING J W, LIU T P, CAO Y P, et al. Unconfined compression tests and strength prediction method for solidified soils of dredged clays with high water content [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup2): 55-60. (in Chinese)
    [13] 索崇娴, 曹洪雨, 曹家玮, 等. 赤泥-电石渣-磷石膏固化铜污染土性能[J]. 环境科学学报, 2021, 41(11): 4686-4693.SUO C X, CAO H Y, CAO J W, et al. Performance of red mud-calcium carbide residue-phosphogypsum solidified copper contaminated soil [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4686-4693. (in Chinese)
    [14] 郭明帅, 潘浩, 王菲. 赤泥基固化剂固化/稳定铅锌镉污染土的强度及浸出特性研究[J]. 岩石力学与工程学报, 2021, 40(Sup1): 2968-2975.GUO M S, PAN H, WANG F. Study on the strength and leaching characteristics of solidified/stabilized lead, zinc and cadmium contaminated soil with red mud-based curing agent [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup1): 2968-2975. (in Chinese)
    [15] TINGLE J S, NEWMAN J K, LARSON S L, et al. Stabilization mechanisms of nontraditional additives [J]. Transportation Research Record: Journal of the Transportation Research Board, 2007(1): 59-67.
    [16] CHEN Q S, INDRARATNA B, CARTER J, et al. A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt [J]. Computers and Geotechnics, 2014, 61: 316-327.
    [17] 张涛. 基于工业副产品木质素的粉土固化改良技术与工程应用研究[D]. 南京: 东南大学, 2015.ZHANG T. Study on technology and engineering application of silt solidified by lignin [D]. Nanjing: Southeast University, 2015. (in Chinese)
    [18] 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018 [S]. 北京: 中国标准出版社, 2018.Soil environmental quality-Risk control standard for soil contamination of development land: GB 36600—2018 [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [19] 刘欣. 工业废渣复合固化重金属污染土及路用性能研究[D]. 重庆: 重庆交通大学, 2019.LIU X. Study on compound solidification of heavy metal contaminated soil with industrial waste and its road performance [D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    [20] 姬胜戈, 王宝仲, 杨秀娟, 等. 木质素磺酸钙改性分散性土的试验研究[J]. 岩土力学, 2021, 42(9): 2405-2415.JI S G, WANG B Z, YANG X J, et al. Experimental study of dispersive clay modified by calcium lignosulfonate [J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415. (in Chinese)
    [21] 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.Standard for geotechnincal testing method: GB/T 50123—2019 [S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22] 固体废物 浸出毒性浸出方法 硫酸硝酸法: HJ/T 299—2007 [S]. 北京: 中国环境科学出版社, 2007.Solid waste-Extraction procedure for leaching toxicity-Sulphuric acid & nitric acid method: HJ/T 299—2007 [S]. Beijing: China Environment Science Press, 2007. (in Chinese)
    [23] 何俊, 王小琦, 石小康, 等. 碱渣-矿渣固化淤泥的无侧限抗压强度与微观特征[J]. 应用基础与工程科学学报, 2021, 29(2): 376-386.HE J, WANG X Q, SHI X K, et al. Unconfined compressive strength and microscopic characteristics of soft soil solidified with soda residue and ground granulated blast furnace slag [J]. Journal of Basic Science and Engineering, 2021, 29(2): 376-386. (in Chinese)
    [24] 石云兴, 王泽云, 吴东, 等. 钙矾石的形成条件与稳定性[J]. 混凝土, 2000(8): 52-54.SHI Y X, WANG Z Y, WU D, et al. Forming condition and stability of ettringite [J]. Concrete, 2000(8): 52-54. (in Chinese)
    [25] 张建伟, 亢飞翔, 边汉亮, 等. 冻融循环下木质素改良黄泛区粉土无侧限抗压强度试验研究[J]. 岩土力学, 2020, 41(Sup2): 1-6.ZHANG J W, KANG F X, BIAN H L, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow River flood area under freezing-thawing cycles [J]. Rock and Soil Mechanics, 2020, 41(Sup2): 1-6. (in Chinese)
    [26] KONG X H, SONG S G, WANG M Y, et al. Experimental research of low liquid limit silt stabilized by lignin in the flooding area of Yellow River [J]. Geotechnical and Geological Engineering, 2019, 37(6): 5211-5217.
    [27] US EPA T. EPA method 9100: Saturated hydraulic conductivity, saturated leachate conductivity, and intrinsic permeability [R]. Bristol, United States, 1986.
    [28] 危险弃物鉴别标准 浸出毒性鉴别:GB/T 5085.3—2007 [S]. 北京: 中国环境科学出版社, 2007.Identification standards for hazardous wastes-Identification for extraction toxicity: GB/T5085.3—2007 [S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
    [29] 章定文, 项莲, 曹智国. CaO对钙矾石固化/稳定化重金属铅污染土的影响[J]. 岩土力学, 2018, 39(1): 29-35.ZHANG D W, XIANG L, CAO Z G. Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. Rock and Soil Mechanics, 2018, 39(1): 29-35. (in Chinese)
    [30] 樊科伟, 严俊, 刘苓杰, 等. 木质素纤维改性季冻区膨胀土强度特性与微观结构研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 326-334.FAN K W, YAN J, LIU L J, et al. Study on strength characteristics and microstructure of expansive soil treated with lignin fibers in seasonal frozen area [J]. Journal of Central South University (Science and Technology), 2022, 53(1): 326-334. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵之,杨秀娟,石庆红,樊恒辉,刘翼飞.磷石膏/木质素固化铅污染土的无侧限抗压强度[J].土木与环境工程学报(中英文),2025,47(1):89-99. ZHAO Zhi, YANG Xiujuan, SHI Qinghong, FAN Henghui, LIU Yifei. Unconfined compressive strength of phosphogypsum/lignin solidified lead contaminated soil[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(1):89-99.10.11835/j. issn.2096-6717.2022.114

复制
分享
文章指标
  • 点击次数:91
  • 下载次数: 95
  • HTML阅读次数: 63
  • 引用次数: 0
历史
  • 收稿日期:2022-07-04
  • 在线发布日期: 2024-12-18
文章二维码