超高性能混凝土劈拉损伤破坏的声光联合表征
作者:
作者单位:

1.河海大学 土木与交通学院,南京 210098;2.苏交科集团股份有限公司,南京 210017;3.中建三局集团有限公司,武汉 430075

作者简介:

陈徐东(1985- ),男,博士,教授,博士生导师,主要从事混凝土动态力学特性及损伤机理研究,E-mail:cxdong1985@163.com。
CHEN Xudong (1985- ), PhD, professor, doctorial supervisor, main research interests: dynamic mechanical properties and damage mechanism of concrete, E-mail: cxdong1985@163.com.

中图分类号:

TU528.58

基金项目:

国家重点研发计划(2021YFB2600200);国家自然科学基金(51979090、52379124)


Acousto-optic characterization of splitting tensile damage of ultra-high performance concrete
Author:
Affiliation:

1.College of Civil and Transportation Engineering, Hohai University, Nanjing210098, P. R. China;2.JSTI Group, Nanjing210017, P. R. China;3.China Construction Third Engineering Group Co., Ltd., Wuhan430075, P. R. China

Fund Project:

National Key Research and Development Program of China (No. 2021YFB2600200); National Natural Science Foundation of China (Nos. 51979090, 52379124)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究超高性能混凝土(UHPC)的劈拉破坏特征,采用3种不同的加载速率(0.1、0.01、0.001 mm/s)进行劈拉加载,在加载过程中采用数字图像相关(DIC)方法非接触观测裂缝演化,同时结合声发射(AE)技术对UHPC的破坏全过程进行动态监测,并基于DIC应变云图、AE参量分析试件的破坏特征。结果表明,钢纤维的掺入改善了混凝土的脆性,UHPC峰后荷载-位移曲线下降更平缓,没有出现急剧下降的情况;加载速率越高,UHPC测出劈拉强度越高,符合混凝土速率效应规律,加载速率由0.001 mm/s提升到0.01 mm/s和由0.01 mm/s提升到0.1 mm/s,劈拉峰值荷载分别提高了27.9%和28.5%。采用DIC法进行UHPC劈拉试验的变形测量可获得连续的变形数据,能完整地捕捉裂缝的开展过程,证明DIC能很好地反映试件表面裂缝开展演化过程。基于RA-AF值分析可以快捷、有效地判断混凝土中裂缝的开展类型。根据分析结果,UHPC劈拉试验的裂缝类型绝大多数为拉伸裂缝,且随着加载速率的提高,拉伸裂缝占总裂缝的比例提高。

    Abstract:

    In order to study the splitting tensile failure characteristics of ultra-high performance concrete (UHPC), three different loading rates (0.1, 0.01, 0.001 mm/s) were used for the splitting tensile loading. During the loading process, the digital image correlation (DIC) method was used to observe the crack evolution by non-contact deformation. At the same time, the acoustic emission (AE) technology was used to dynamically monitor the entire failure process of UHPC, and the failure characteristics of the specimen were analyzed based on the DIC strain cloud map and AE parameters. The results show that due to the incorporation of steel fibers, the brittleness of concrete is improved, and the post-peak load-displacement curve of UHPC decreases more gently without a sharp decline. The higher the loading rate, the higher the splitting tensile strength measured by UHPC, which conforms to the law of concrete rate effect. When the loading rate is increased from 0.001 mm/s to 0.01 mm/s and from 0.01 mm/s to 0.1 mm/s, the splitting tensile peak load is increased by 27.9 % and 28.5 % respectively. The digital image correlation method is used to measure the deformation of UHPC splitting tensile experiment, and continuous deformation data can be obtained, which can completely capture the development process of cracks. It is proved that DIC can well reflect the evolution process of cracks on the surface of specimens. The analysis based on RA-AF value can quickly and effectively determine the type of crack development in concrete. According to the analysis results, the crack types of UHPC splitting tensile experiment are mostly tensile cracks, and the proportion of tensile cracks in the total cracks increases with the increase of loading rate.

    参考文献
    [1] 金浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3): 1-18.JIN L, ZHANG R B, DU X L, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures [J]. China Civil Engineering Journal, 2021, 54(3): 1-18. (in Chinese)
    [2] 王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度[J]. 硅酸盐学报, 2022, 50(8): 2190-2195.WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190-2195. (in Chinese)
    [3] DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model [J]. Cement and Concrete Research, 1994, 24(6): 997-1009.
    [4] 徐海宾, 邓宗才. 新型UHPC应力-应变关系研究[J]. 混凝土, 2015(6): 66-68, 79.XU H B, DENG Z C. Stress-strain constitutive law of a new kind of UHPC [J]. Concrete, 2015(6): 66-68, 79. (in Chinese)
    [5] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement and Concrete Composites, 2014, 48: 53-66.
    [6] YU R, SPIESZ P, BROUWERS H J H. Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount [J]. Construction and Building Materials, 2014, 65: 140-150.
    [7] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58.ZHANG Z, SHAO X D, LI W G, et al. Axial tensile behavior test of ultra high performance concrete [J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese)
    [8] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5): 1295-1305.GUAN P W, TU Y Z, ZHANG P, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression and tension [J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1295-1305. (in Chinese)
    [9] 胡翱翔, 梁兴文, 李东阳, 等. 超高性能混凝土配合比设计及其受拉性能[J]. 湖南大学学报(自然科学版), 2018, 45(3): 39-46.HU A X, LIANG X W, LI D Y, et al. Mix design method and uniaxial tensile characteristics of ultra-high performance concrete [J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 39-46. (in Chinese)
    [10] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律[J]. 材料导报, 2017, 31(23): 85-89.WANG Q N, GU C P, SUN W. Microstructure evolution during hydration process of ultra-high performance concrete containing fly ash and silica fume [J]. Materials Review, 2017, 31(23): 85-89. (in Chinese)
    [11] 曹润倬, 周茗如, 周群, 等. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.CAO R Z, ZHOU M R, ZHOU Q, et al. Effect of ultra-fine fly ash on rheological properties, mechanical properties and microstructure of ultra-high performance concrete [J]. Materials Reports, 2019, 33(16): 2684-2689. (in Chinese)
    [12] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3): 722-731.LIANG X W, HU A X, YU J, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete [J]. Acta Materiae Compositae Sinica, 2018, 35(3): 722-731. (in Chinese)
    [13] 张文华, 刘鹏宇, 吕毓静. 超高性能混凝土动态力学性能研究进展[J]. 材料导报, 2019, 33(19): 3257-3271.ZHANG W H, LIU P Y, LYU Y J. Dynamic mechanical property of UHPCs: A review [J]. Materials Reports, 2019, 33(19): 3257-3271. (in Chinese)
    [14] 欧阳雪, 史才军, 史金华, 等. 超高性能混凝土受压力学性能及其弹性模量预测[J]. 硅酸盐学报, 2021, 49(2): 296-304.OUYANG X, SHI C J, SHI J H, et al. Compressive mechanical properties and prediction for elastic modulus of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 296-304. (in Chinese)
    [15] 杨简, 陈宝春, 苏家战. 钢纤维对超高性能混凝土弹性模量的影响[J]. 硅酸盐学报, 2020, 48(5): 652-658.YANG J, CHEN B C, SU J Z. Effect of steel fiber on elastic modulus of ultra-high-performance concrete [J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 652-658. (in Chinese)
    [16] 邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6): 1274-1280.DENG Z C. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete [J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1274-1280. (in Chinese)
    [17] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938.GAO X L, WANG J Y, GUO J Y, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading [J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938. (in Chinese)
    [18] 邓宗才, 姚军锁. 箍筋约束超高性能混凝土柱受压性能研究进展[J]. 建筑科学与工程学报, 2020, 37(1): 14-25.DENG Z C, YAO J S. Research progress on compressive behavior of stirrup-confined ultra-high performance concrete columns [J]. Journal of Architecture and Civil Engineering, 2020, 37(1): 14-25. (in Chinese)
    [19] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2): 10-20.CHEN B C, WEI J G, SU J Z, et al. State-of-the-art progress on application of ultra-high performance concrete [J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 10-20. (in Chinese)
    [20] ASSI L, SOLTANGHARAEI V, ANAY R, et al. Unsupervised and supervised pattern recognition of acoustic emission signals during early hydration of Portland cement paste [J]. Cement and Concrete Research, 2018, 103: 216-225.
    [21] SOULIOTI D, BARKOULA N M, PAIPETIS A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending [J]. Construction and Building Materials, 2009, 23(12): 3532-3536.
    [22] PREM P R, VERMA M, MURTHY A R, et al. Smart monitoring of strengthened beams made of ultrahigh performance concrete using integrated and nonintegrated acoustic emission approach [J]. Structural Control and Health Monitoring, 2021, 28(5): e2704.
    [23] YING J W, GUO J. Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model [J]. Materials, 2021, 14(15): 4314.
    [24] ALAM S Y, SALIBA J, LOUKILI A. Fracture examination in concrete through combined digital image correlation and acoustic emission techniques [J]. Construction and Building Materials, 2014, 69: 232-242.
    [25] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13.SHAO X D, FAN W, HUANG Z Y. Application of ultra-high-performance concrete in engineering structures [J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese)
    [26] WANG J Y, GUO J Y. Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques [J]. Cement and Concrete Composites, 2018, 88: 17-28.
    [27] 邱继生, 周云仙, 王民煌, 等. 冻融循环作用下煤矸石混凝土的损伤特性及本构关系[J]. 土木与环境工程学报(中英文), 2021, 43(5): 149-157.QIU J S, ZHOU Y X, WANG M H, et al. Damage characteristics and constitutive relationship of coal gangue concrete under freeze-thaw cycles [J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 149-157. (in Chinese)
    [28] 张黎明, 高速, 任明远, 等. 大理岩破坏起裂应力及断裂能特征试验研究[J]. 土木建筑与环境工程, 2014, 36(4): 69-73.ZHANG L M, GAO S, REN M Y, et al. Experimental analysis on crack initiation stress and rupture energy of marble failure [J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(4): 69-73. (in Chinese)
    [29] 郭玉柱, 陈徐东, 胡良鹏, 等. 花岗岩-喷射混凝土梁损伤的声发射可视化表征[J]. 哈尔滨工业大学学报, 2022, 54(8): 90-99.GUO Y Z, CHEN X D, HU L P, et al. Visualized characterization of damage in granite-shotcrete beams based on acoustic emission [J]. Journal of Harbin Institute of Technology, 2022, 54(8): 90-99. (in Chinese)
    [30] OHTSU M, SHIOTANI T, SHIGEISHI M,et al. Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete test method for classification of active cracks in concrete structures by acoustic emission [J]. Materials and Structures, 2010, 43(9): 1187-1189.
    [31] FARHIDZADEH A, SALAMONE S, SINGLA P. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(14): 1722-1735.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈徐东,冯子鸣,王宁宁,吴文文,石丹丹,栾金津.超高性能混凝土劈拉损伤破坏的声光联合表征[J].土木与环境工程学报(中英文),2025,47(1):179-187. CHEN Xudong, FENG Ziming, WANG Ningning, WU Wenwen, SHI Dandan, LUAN Jinjin. Acousto-optic characterization of splitting tensile damage of ultra-high performance concrete[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(1):179-187.10.11835/j. issn.2096-6717.2023.143

复制
分享
文章指标
  • 点击次数:130
  • 下载次数: 104
  • HTML阅读次数: 48
  • 引用次数: 0
历史
  • 收稿日期:2023-09-23
  • 在线发布日期: 2024-12-18
文章二维码