多目标优化基坑双边耦合变形控制设计建模及求解方法
作者:
作者单位:

1.江西省交通科学研究院有限公司,南昌 330200;2.华东交通大学 江西省土木基础设施智慧建维工程研究中心;江西省岩土工程基础设施安全与控制重点实验室,南昌 330013

作者简介:

丁小文(1973- ),男,高级工程师,主要从事基坑和隧道开挖技术研究,E-mail:dundun@eatrice.cn。
DING Xiaowen (1973- ), senior engineer, main research interests: foundation pit and tunnel excavation technology, E-mail: dundun@eatrice.cn.

通讯作者:

万琪伟(通信作者),男,博士生,E-mail:i@eatrice.cn。

中图分类号:

TU433

基金项目:

国家重点研发计划(2023YFC3009400);国家自然科学基金(52238009);国家自然科学基金-高铁联合基金(U1934208);江西省自然科学基金(20223BBG71018)


Multi-objective optimization modeling and solution methods for deformation control design of pit support structures
Author:
Affiliation:

1.Jiangxi Transportation Research Institute Co., LTD., Nanchang 330200, P. R. China;2.Jiangxi Engineering Research Center for Intelligent Construction and Maintenance of Civil Infrastructure; Jiangxi Key Laboratory of Geotechnical Infrastructure Safety and Control, East China Jiaotong University, Nanchang 330013, P. R. China

Fund Project:

National Key R & D Program of China (No. 2023YFC3009400); National Natural Science Foundation of China (No. 52238009); National Natural Science Foundation-High-speed Rail Joint Fund (No. U1934208); Natural Science Fundation of Jiangxi Province (No. 20223BBG71018)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    在城市建设中,基坑工程的安全性和经济性至关重要。由于传统的基坑围护结构设计方法通常依赖保守策略并主要关注强度控制,导致其在精确控制变形方面效率低下,无法满足现代城市建设的复杂需求。为解决这些问题,提出一种新的逆向设计多目标优化模型,该模型融合了变形控制与经济性,旨在提高基坑围护结构设计的效率和经济效益。该模型包含一个双边耦合的基坑围护变形计算模型、一个整合变形控制和成本优化的多目标框架、一个基于元启发式算法的求解策略。与四种元启发式算法的比较和结合实际工程案例的深入分析表明,该方法不仅能实现基坑围护结构的精确变形控制,同时优化了成本效益,特别是半经验半随机的启发式算法在处理复杂优化问题时表现出的更高效率和广泛适用性。

    Abstract:

    In urban construction, the safety and economic efficiency of pit excavation projects are crucial. Traditional pit support structure design methods typically rely on conservative strategies and focus primarily on strength control, which leads to inefficiencies in precise deformation control and fails to meet the complex demands of modern urban construction. To address these issues, this paper introduces a new reverse-design multi-objective optimization model that integrates deformation control with economic efficiency, aimed at enhancing the effectiveness and cost-effectiveness of pit support structure designs. The model includes a bilaterally coupled deformation calculation model for pit supports, a multi-objective framework that integrates deformation control and cost optimization, and a solution strategy based on metaheuristic algorithms. Comparative analysis with four types of metaheuristic algorithms, along with in-depth case studies of actual engineering projects, demonstrates that this method not only effectively achieves precise deformation control but also optimizes cost efficiency. Notably, the semi-empirical and semi-random heuristic algorithms demonstrate superior efficiency and versatility in addressing complex optimization challenges.

    参考文献
    [1] CUI Z, LI Q M, WANG J. Mechanical performance of composite retaining and protection structure for super large and deep foundation excavations [J]. Journal of Civil Engineering and Management, 2019, 25(5): 431-440.
    [2] TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅱ: Top-down construction of the peripheral rectangular pit [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910.
    [3] LIU L L, WU R G, CONGRESS S S C, et al. Design optimization of the soil nail wall-retaining pile-anchor cable supporting system in a large-scale deep foundation pit [J]. Acta Geotechnica, 2021, 16(7): 2251-2274.
    [4] YOU Y, YAN C H, XU B T, et al. Optimization of dewatering schemes for a deep foundation pit near the Yangtze River, China [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 555-566.
    [5] PRAGER W. Optimization of structural design [J]. Journal of Optimization Theory and Applications, 1970, 6(1): 1-21.
    [6] XU C J, CHEN Q Z, WANG Y L, et al. Dynamic deformation control of retaining structures of a deep excavation [J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015071.
    [7] XU R Q, ZHU Y H, DING P. Performance of a large-scale excavation by bottom-up technique in Hangzhou soft clay [J]. Advances in Civil Engineering, 2021, 2021: 6061849.
    [8] CUI K, FENG J, ZHU C Y. A study on the mechanisms of interaction between deep foundation pits and the pile foundations of adjacent skewed arches as well as methods for deformation control [J]. Complexity, 2018, 2018: 6535123.
    [9] LIU S H, YANG J S, FU J Y, et al. Performance of a deep excavation irregular supporting structure subjected to asymmetric loading [J]. International Journal of Geomechanics, 2019, 19(7): 05019007.
    [10] XU C J, LIN Z R, JIANG Y L, et al. Research on the spatial effect of foundation pit under asymmetric loads [J]. Frontiers in Materials, 2022, 9: 976696.
    [11] DING H B, WAN Q W, XU C J, et al. Semianalytical method for controlling the deformation of retaining structures subjected to asymmetrical loads [J]. International Journal of Geomechanics, 2024, 24(4): 04024031.
    [12] 万琪伟, 丁海滨, 万强, 等. 基于变形控制的基坑支护桩设计方法研究[J]. 华东交通大学学报, 2023, 40(4): 24-32.WAN Q W, DING H B, WAN Q, et al. Study on the design method of foundation pit retaining pile based on deformation control [J]. Journal of East China Jiaotong University, 2023, 40(4): 24-32. (in Chinese)
    [13] 胥松奇. 基于天牛群算法优化支持向量回归机的岩土工程位移反分析方法研究[D]. 重庆: 重庆交通大学, 2019.XU S Q. Study on displacement back analysis method of geotechnical engineering using support vector regression optimized by beetle swarm optimization algorithm [D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    [14] 崔春雨. 桩-撑支护型式下基于启发式算法的深基坑变形动态预测方法研究[D]. 济南: 山东大学, 2022.CUI C Y. Research on dynamic prediction method of deep foundation pit deformation based on heuristic algorithm under pile-brace supporting system [D]. Jinan: Shandong University, 2022. (in Chinese)
    [15] 常祎妹, 汪洋, 朱晓宁. 基于运载能力的铁路集装箱中心站轨道吊与集卡协同优化[J]. 交通运输系统工程与信息, 2024, 24(1): 188-198.CHANG Y M, WANG Y, ZHU X N. Collaborative optimization of rail mounted gantry crane and container truck based on actual transportation capacity in railway container terminals [J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(1): 188-198. (in Chinese)
    [16] LI Z C, HU X M, CHEN C, et al. Multi-factor settlement prediction around foundation pit based on SSA-gradient descent model [J]. Scientific Reports, 2022, 12: 19778.
    [17] GAO W. Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm [J]. Natural Hazards, 2015, 76(3): 1625-1649.
    [18] HUANG S, HUANG M M, LYU Y J. A novel approach for sand liquefaction prediction via local mean-based pseudo nearest neighbor algorithm and its engineering application [J]. Advanced Engineering Informatics, 2019, 41: 100918.
    [19] 石一凡, 刘立龙, 兰胜伟, 等. 基于PSO-BP神经网络的中国区域大气加权平均温度模型[J]. 大地测量与地球动力学, 2023, 43(12): 1300-1306.SHI Y F, LIU L L, LAN S W, et al. An atmospheric weighted mean temperature model for China region based on PSO-BP neural network [J]. Journal of Geodesy and Geodynamics, 2023, 43(12): 1300-1306. (in Chinese)
    [20] 韩鞠, 詹必雄, 刘宜成, 等. 基于布谷鸟算法优化BP神经网络的塔吊安全研究[J]. 工业建筑, 2023, 53 (Sup2): 790-793.HAN J, ZHAN B X, LIU Y C, et al. Optimization of BP neural network based on cuckoo algorithm for tower crane safety[J]. Industrial Building, 2023, 53(Sup2): 790-793. (in Chinese)
    [21] LIU L L, CAI G J, LIU S Y, et al. Deformation characteristics and control for foundation pits in floodplain areas of Nanjing, China [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5527-5538.
    [22] LIU B, XU W, ZHANG D W, et al. Deformation behaviors and control indexes of metro-station deep excavations based on case histories [J]. Tunnelling and Underground Space Technology, 2022, 122: 104400.
    [23] JUANG C H, WANG L, HSIEH H S, et al. Robust geotechnical design of braced excavations in clays [J]. Structural Safety, 2014, 49: 37-44.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁小文,龙思桦,叶快,万琪伟,丁海滨,徐长节.多目标优化基坑双边耦合变形控制设计建模及求解方法[J].土木与环境工程学报(中英文),2025,47(2):126-133. DING Xiaowen, LONG Sihua, YE Kuai, WAN Qiwei, DING Haibin, XU Changjie. Multi-objective optimization modeling and solution methods for deformation control design of pit support structures[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(2):126-133.10.11835/j. issn.2096-6717.2024.020

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 61
  • HTML阅读次数: 23
  • 引用次数: 0
历史
  • 收稿日期:2024-01-12
  • 在线发布日期: 2025-03-10
文章二维码