针对极端事件估计的高斯主动学习算法
CSTR:
作者:
作者单位:

1.西南交通大学,土木工程学院,成都 610031;2.西南交通大学,陆地交通地质灾害防治技术国家工程研究中心,成都 610031;3.中铁第一勘察设计院集团有限公司,西安 710043

作者简介:

杨海婷(2000- ),女,主要从事工程结构可靠度研究,E-mail:1304173992@qq.com。
YANG Haiting (2000- ), main research interest: reliability of engineering structure, E-mail: 1304173992@qq.com.

通讯作者:

杨成(通信作者),男,副教授,博士生导师,E-mail:yangcheng@swjtu.edu.cn。

中图分类号:

TU311.41

基金项目:

国家重点研发计划(2019YFD1101005、2019YFD1101001、2021YFB2600501);四川省自然科学基金(2022NSFSC0458);中铁第一勘察设计院集团有限公司科研开发项目(院科20-53、院科20-21、CR2321718)


Gaussian active learning algorithm for extreme event estimation
Author:
Affiliation:

1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China;2.Land Traffic Geological Disaster Prevention Technology National Engineering Research Center, Southwest Jiaotong University, Chengdu 610031, P. R. China;3.China Railway First Survey and Design Institute Group Co., Ltd., Xi’an 710043, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos. 2019YFD1101005, 2019YFD1101001, 2021YFB2600501); Sichuan Natural Science Foundation (No. 2022NSFSC0458); Research and Development Project of China Railway First Survey and Design Institute Group Co., Ltd. (Nos. Academy 20-53, Academy 20-21, CR2321718)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    一些重大关键结构在服役期间会面临极端事件,由于极端事件发生的概率极低而可能被忽视,但如果发生将会导致严重损失。为了准确估计复杂结构的极小失效概率,提出一个能平衡极端事件发生概率计算精度和成本的方法。通过基于高斯代理模型的主动学习策略,构建能将训练点有效集中在单侧尾部的搜索函数,该函数更善于寻找分布函数加权后的误差最大区域,并重新投入新增训练点。为了验证算法的有效性,以结构开裂非线性分析为算例,将算法结果与MCS进行比较,估计的随机变量均值相对误差在10%左右,表明该方法能得到可接受的统计量结果;与AL-GP的结果进行对比,估计的随机变量误差期望降低了20%,表明在尾部的不确定性能更快降低。通过算例证明了算法对尾部的敏感性更高,适用于有潜在尾部风险的分布计算。

    Abstract:

    Some major key structures will face extreme events during their service life, which may be ignored due to their extremely low probability, but will result in serious losses if they occur. In order to accurately estimate the minimum probability of failure of complex structures, this paper presents a method that can balance the accuracy and cost of calculating the probability of extreme events. Using an active learning strategy based on a Gaussian surrogate metamodel, a search function is constructed that can effectively concentrate the training points on one side of the tail, and the function is better at finding the maximum error region weighted by the distribution function and re-investing the new training points. To verify the effectiveness of the algorithm, the nonlinear analysis of a structural crack is taken as an example. The relative error of the proposed algorithm is about 10% compared to MCS. The mean relative error of the estimated random variables is about 10%, indicating that this method can obtain acceptable statistical results. Compared to the results of AL-GP, the error expectation of the estimated random variables is reduced by 20%, indicating that the uncertainty in the tail can be reduced faster. The example proves that the algorithm is more sensitive to the tail and is suitable for the distribution calculation with potential tail risk.

    参考文献
    相似文献
    引证文献
引用本文

杨海婷,尹炜浩,黄滟雯,杨成,胡瑞青.针对极端事件估计的高斯主动学习算法[J].土木与环境工程学报(中英文),2025,47(4):148-156. YANG Haiting, YIN Weihao, HUANG Yanwen, YANG Cheng, HU Ruiqing. Gaussian active learning algorithm for extreme event estimation[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(4):148-156.10.11835/j. issn.2096-6717.2024.031

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-17
  • 出版日期:
文章二维码