基于深度学习的室内多视角点云自动化配准方法
CSTR:
作者:
作者单位:

1.重庆大学,土木工程学院,重庆 400045;2.重庆大学,自动化学院,重庆 400045;3.中铁建工集团有限公司,北京 100160

作者简介:

刘界鹏(1978- ),男,博士,教授,主要从事混合结构和智能建造研究,E-mail:liujp@cqu.edu.cn。
LIU Jiepeng (1978- ), PhD, professor, main research interests: hybrid structure and intelligent construction, E-mail: liujp@cqu.edu.cn.

通讯作者:

李东声(通信作者),男,博士,E-mail:lds@cqu.edu.cn。

中图分类号:

TU198

基金项目:

国家自然科学基金(52130801、52108283)


Towards automated multi-view point cloud registration of indoor scenes using deep learning
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.School of Automation, Chongqing University, Chongqing 400045, P. R. China;3.China Railway Construction Engineering Group, Beijing 100160, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos. 52130801, 52108283)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    尺寸质量检测是成品房屋交付前的必要步骤,但传统人工检测方法耗时费力。随着利用陆地激光扫描仪进行自动化尺寸质量检测得到更多关注,室内多视角点云自动化配准变得更加重要。在室内布置标靶的效率偏低,且成品房屋室内有大量重复结构,不适合仅依赖自然几何基元或俯视图进行无标靶配准,提出一种基于深度学习的室内多视角点云自动化配准方法:利用PointAF神经网络对扫描点云数据进行语义分割,再进行实例分割,得到不同结构的点云实例;利用门实例进行两两配准,计算变换参数,通过基于重叠置信度和冲突约束的评价函数去除错误匹配,并使用基于生成树的顺序配准方法完成多视角配准。在验证和对比实验中,利用2套成品房屋共21站扫描点云数据,验证了所提方法的有效性和精度。

    Abstract:

    Dimensional quality inspection is a necessary step before delivering finished residences. However, traditional manual inspection methods are time-consuming and labor-intensive. As automated dimensional quality inspection using terrestrial laser scanners receives more attention, automated multi-view point cloud registration of indoor scenes becomes more important. Due to the fact that posting targets indoors is inefficient and a large number of repetitive structures fill the indoor scenes of finished residence, it is not suitable to rely solely on natural geometric primitives or top views for target-less registration. In this paper, a deep learning-based automated multi-view point cloud registration method for indoor scenes is proposed. Firstly, the PointAF neural network is used to semantically segment the scanned point cloud data. Then instance segmentation is performed to obtain point cloud instances with different structures. Next, pairwise registration is performed to compute the transformation parameters using door instances. False matches are then removed using an evaluation function based on overlapping confidence and conflict constraints. Finally, multi-view registration is achieved using a spanning tree based sequential registration method. In the validation and comparison experiments, a total of 21 stations of scanned point cloud data from two sets of finished residences are utilized to demonstrate the effectiveness and accuracy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

刘界鹏,胡骁,李东声,陈天择,范晓亮,瓮雪冬.基于深度学习的室内多视角点云自动化配准方法[J].土木与环境工程学报(中英文),2025,47(5):12-22. LIU Jiepeng, HU Xiao, LI Dongsheng, CHEN Tianze, FAN Xiaoliang, WENG Xuedong. Towards automated multi-view point cloud registration of indoor scenes using deep learning[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):12-22.10.11835/j. issn.2096-6717.2024.058

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码