融合图像和声纹特征识别的钢-混凝土结构磁吸爬壁机器人设计
CSTR:
作者:
作者单位:

1.南京林业大学 土木工程学院,南京 210037;2.长江地球物理探测(武汉)有限公司, 武汉 430010;3.河海大学 海岸灾害及防护教育部重点实验室,南京 210098

作者简介:

陈冬冬(1992- ),男,博士,副教授,主要从事压电智能传感研究,E-mail:chendongjt@163.com。
CHEN Dongdong (1992- ), PhD, associate professor, main research interest: piezoelectric-based smart sensing, E-mail: chendongjt@163.com.

通讯作者:

付睿丽(通信作者),女,博士,副教授,E-mail:ruilifu@hhu.edu.cn。

中图分类号:

TU689;TP242.3

基金项目:

国家自然科学基金(52408337、52201319);中国博士后科学基金(2023M741728);江苏省自然科学基金(BK20220980);江苏省高等学校基础科学(自然科学)研究项目(24KJB580008);中国地球物理学会工程物探检测重点实验室开放研究基金(CJ2021GE08);南京市建设行业科技计划(Ks2389)


Design of a magnetic wall-climbing robot for steel-concrete structures by integrating image and acoustic feature recognition
Author:
Affiliation:

1.School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China;2.Changjiang Geophysical Exploration and Testing Co., Ltd., Wuhan 430010, P. R. China;3.Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210098, P. R. China

Fund Project:

National Natural Science Foundation of China (Nos. 52408337, 52201319); China Postdoctoral Science Foundation (No. 2023M741728); Natural Science Foundation of Jiangsu Province (No. BK20220980); Basic Science Research of Jiangsu Province Higher Education Institution (No. 24KJB580008); Open Research Fund of Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society (No. CJ2021GE08); Nanjing Construction Industry Science and Technology Project (No. Ks2389)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢-混凝土结构界面脱空自动化检测难题,设计了一种融合图像和声纹特征识别的爬壁机器人。首先介绍该爬壁机器人的底盘、磁吸装置、电源系统、驱动系统、图传和声纹等模块。其次,对硬件控制系统进行重点说明,通过受力分析和试验测试,确定了钕铁硼永磁体提供吸附力的方案。最后,详细阐述了图像和声纹特征识别软件部分的构成与功能,其中,图像采集部分采用基于香橙派平台的图像传输解决方案,声纹识别模块由前端、中端和后端3层架构构成:前端搭载叩击和录音设备,用于激发和采集声纹;开发了声纹识别微信小程序中端,实现声纹噪声去除和有效特征提取;后端通过腾讯云和微信小程序配合,识别声纹数据并将结果返回给微信小程序。设计的融合图像和声纹特征识别的磁吸爬壁机器人能实现图像和声纹的协同采集与分析,为钢-混凝土结构界面脱空自动化检测提供有效的解决方案。

    Abstract:

    To address the challenge of automated detection of void of the steel-concrete structures interfaces, this paper designs a magnetic wall-climbing robot incorporating image and acoustic feature recognition. First, we introduce the robot’s chassis, magnetic suction device, power system, drive system, and mapping and sound modules. Next, we discuss the robot’s hardware control system and detemine the feasibility of using Neodymium-iron-boron permanent magnet for adsorption force through force analysis and experimental testing. Finally, the composition and functions of the image and acoustic feature recognition software part are detailed. Among them, the image capturing part adopts the image transmission solution based on the Orange Pie platform. The acoustic pattern recognition module consists of front-end, middle-end and back-end architecture: the front-end carries percussion and recording devices for excitation and collection of acoustic patterns; the middle-end of the acoustic pattern recognition WeChat mini program is developed to achieve acoustic pattern noise removal and effective feature extraction; the back-end, through the cooperation of Tencent Cloud and the WeChat mini program, recognizes acoustic pattern data and returns the results to the WeChat mini program. The magnetic wall-climbing robot incorporating image and acoustic feature recognition designed in this paper can achieve the collaborative acquisition and analysis of image and acoustic patterns, providing an effective solution for the automated inspection of steel-concrete and other structural interfaces for debonding.

    参考文献
    相似文献
    引证文献
引用本文

陈冬冬,张建清,张骁琳,季阳,付睿丽.融合图像和声纹特征识别的钢-混凝土结构磁吸爬壁机器人设计[J].土木与环境工程学报(中英文),2025,47(5):38-43. CHEN Dongdong, ZHANG Jianqing, ZHANG Xiaolin, JI Yang, FU Ruili. Design of a magnetic wall-climbing robot for steel-concrete structures by integrating image and acoustic feature recognition[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):38-43.10.11835/j. issn.2096-6717.2025.003

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码